Fiscal Year 2021

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

3. Memory Hierarchy Design

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Datapath of single-cycle processor supporting ADD

IR[25:21] IR[20:16] IR[15:11] x

op rs rt rd shamt funct
Ox800 add $t0, $s1, $s2 [add $8, $17, $18]

-/

dd

>A
Ry

Instruction [25:21] Read
.| Read | register 1
PC "™ address d Read | _
Instruction [20:16] Pead data 1
* > i Zero
Instruction | [r register 2 > ALU
[31:0] _ Read - ALU
| Write data 2 result
Instruction | | nstruction register —_— i
memory | ¢ >
T Write
el "
data Registers | | S

]
w
I
|

$17
$18 = 4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Datapath of processor supporting ADD and ADDI

IR[25:21]

IR[20:16]

op

I'S

It

16 bit immediate

Ox804

addi $ti1, $te, 3

[addi $9, $8, 3]

| format

PC

>

$8 = 7

_ | Read
" | address

Instruction
[31:0]

Instruction
memaory

Instruction [25:21]

Instruction [20:16]

—

L.,

Instruction [15:11]

Instruction [15:0]

+ i 3

Read

register 1 Read R

Read data 1 2

register 2 > ero
ALU a1

Write dzteaag — result

register

Write d

data Registers

l 6 | sign 32
extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Waveform of proc02

Signals
Time
CLK
RST X
pcl31:
ir[31:
opls:
rs[4:
rtl4:
rd[4:
imm[31:
rrs[31:
rrt[31:
RRT[31:
rdst[4:
result[31:

[I v B v Y - I - R - B > Y v IR - Y [e I >
e e e e e e et e e et e

Wawves

LT

Xx+ 100000020
KK 2e
WK 2e

aa
Ba
geageaza
28000888
AR
(21a]s]aqeTele]s]

Ba

BRRRREEE

Bea888as geegegac geegeala
01855828

ggopeeas

B0000084A: paaaaaas s]s upu]u]le bt

add $0, $0, $0 # NOP {6'h@, 5'de, 5'de, 5'de, 5'de, 6'h20}
addi $to, $zero, 3 # {6'h8, 5'do, 5'd8, 16'd3}

addi $t1, $zero, 5 # {6'h8, 5'do, 5'd9, 16'd5}

add $t2, $to, $t1 # {6'he, 5'd8, 5'd9, 5'd1@, 5'de, 6'h20}

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

MIPS Memory Access Instructions

™

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\
MIPS has two basic data transfer instructions for %%
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

The data is loaded into (Iw) or stored from (sw) a register
in the register file — a 5 bit address

The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
of fset value

« A 16-bit field meaning access is limited fo memory locations
within a region of +2!3 or 8,192 words (+2° or 32,768 bytes)
of the address in the base register

* Note that the offset can be positive or negative

Machine Language - Load Instruction X
\

* Load/Store Instruction Format (I format):

C 1wiSt0, (24 (8s2)

op S rt 16 bit offset
Memory

Oxffffffff

24,, + $s2 = St0 +—— 0x120040ac
... 0001 1000 552 —— Ox12004094
+...1001 0100 050000000
... 1010 1100 = 0x120040ac oioooogogg
0x00000004

Ox00000000

&’ data word address (hex)
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Datapath of processor supporting ADD, ADDI, LW

IR[25:21]

IR[20:16]

op

I'S

It

16 bit immediate

ox808 1w $t2, 4($t0)

[1w $10, 4($8)]

| format

>

PC

$8 = 0x10
mem[Ox14] = 3

_ | Read
" | address

Instruction
[31:0]

Instruction
memaory

Instruction [25:21]

Instruction [20:16]

—

L.,

Instruction [15:11]

Instruction [15:0]

+ i 3

Read

register 1 Read R
Read data 1 2
register 2 > ero
ALU a1
: FRead
er.tE data 2 - result | Address
register
Write d
data Registers
l 6 | sign 32
extend

Instruction [5:0]

data

Read
data

Data

| Write memory

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A Typical Memory Hierarchy

By taking advantage of the principle of locality
Present much memory in the cheapest technology

at the speed of fastest technology L
S S
On-Chip Components =T T
Control =T
=] Second Secondary
- - [& Level Memory
Datapath | 2 — Cache (Disk)
I (SRAM)
ol] =
Speed (%cycles): Y2's 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s GstoT’s
Cost: highest lowest

ﬁw TLB: Translation Lookaside Buffer
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

MIPS Direct Mapped Cache Example

« One word/block, cache size = 1K words (4KB) X
Byte
3130 1312 11 ... 210
K/ offset
Hit Tag 20 10 Data
t Index 4
Index Valid Tag Data

0
1
2

— ?

1021 I
1022
1023

~~20 <132
) @VJ What kind of locality are we taking advantage of?

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Multiword Block Direct Mapped Cache

Hit

A

Four words/b

ock, cache size = 1K words (4KB)

Byte
3130 ... 1312 11 ... 43210
" offset
Ta 320 ;]
g Block offset
Index

0
1
2

Ll
»

Index Valid Tag

Data (4 word)

v

253
254
255

CJ

A“f_a'

~4-20

~

What kind of locality are we taking advantage of?

N

4

~N
32

P C€SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data

13

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

Four-Way Set Associative Cache

« 28:=256 sets each with four ways (each with one block)

3130

1312 11

2 1% /Byte offset

X
Tag 38
Index

IndexV Tag Data V Tag V Tag Data V Tag Data

0 0 0 0

1 1 1 1

2 2 2 2
— Y ? ° Py ? Py M

253 253 253 253

254 254 254 254

255 255 255 255

O i i L

Hit

S 4x1 select

‘ Data

15

Cache Associativity & Replacement Policy
T e e

Book
Bookshelf

g CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Costs of Set Associative Caches

 When a miss occurs,
which way’s block do we pick for replacement ?

* Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

* Must have hardware to keep track of when each way’s block was
used

« For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way’s bit)

)
Random
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

18

Recommended Reading
\

« Emulating Optimal Replacement with a Shepherd Cache

» Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of
Science =
« MICRO-40, pp. 445-454, 2007

 Session 8: Cache Replacement Policies

* A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to harrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT."

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Memory Hierarchy Design

\ — 4—\ — —
Memory Hierarchy
Fp— L2 and lower caches

@ Objective : Need to reduce expensive
memory accesses

@ Design : Large size, Higher associativity,

CONFLICT - MITENTTY. g
sasses, ([e Complex design
w.‘\-\. f.-'hcmm
INTERACTION |

@ Problem : Do not interact with program
directly and observe filtered temporal locality

@ High Associativity — replacement policy crucial to performance

@ L1 cache services temporal accesses — Lack of temporal
accesses at L2 — LRU replacement inefficient

@ Replacement decisions are taken off the processor critical path

ﬁ Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

LRU has room for improvement
T— ——— ———— —e —

LRU vs OPT

© |Es1zke-lru1s B 512k84ruFa [256KB-0pts [512KB-opti6

I [0/ 100 O mmmm

D_

aart mcf gee luca swim applr’ﬁﬁjmp twulf‘ vpr-i'_'_-f_ﬁ;:-éﬁrﬁgrid ap%i?:avgzﬁ

MPKI

for SPEC2000 suite, Benchmarks with MPKI < 5 not plotted but
count towards average

Huge performance gap between LRU and OPT
OPT at half the size preferable to LRU at double the size

<

MPKI: Miss Per Kilo Instructions Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

21

OPT: Optimal Replacement Policy
T ——— —_— .y, — o

<

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

Q Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady 1966 Mattson 1970, McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing

access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead
windows to identify replacement candidates and modify current

cache state [Sugumar-SIGMETRICS1993]

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Example of Optimal Replacement Policy
e

T

—

gy -

Ty,

Understanding OPT

AW ‘A IA A JA A A TA A A LA
Access Sequence 5)%1; 6/ 3171 45T 21T s T e g
OPTorderfor Asf" (g ! {1} ioi3iaf | |

i i Lo I i I I I —
DPImﬂmfnr%j Co o223y b4

@ Consider 4 way associative cache with one set initially containing lines
(41,42 43 _44), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows

& Identify replacement candidates : (4y 45 A3, 44.45)
& Lookahead and gather imminence order - shown in table,
lookahead window circled

) Make replacement decision : A4s replaces A
@ Ag self-replaces, lookahead window and imminence order in table

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

23

Shepherd Cache emulation OPT
e,

Emulating OPT with a Shepherd Cache

FPROCESSOR

Shepherd| |
Cache

MEMORY

@ Split the cache into two logical parts

@ Main Cache (MC) for which optimal
replacement is emulated

@ Shepherd Cache (5C) used to provide a
lookahead and guide replacements from MC
towards OPT

@ Operation

& Buffer lines temporarily in SC before moving
them to MC,. SC acts as a FIFO buffer

@ While in SC, gather imminence information and
emulate lookahead

& When forced out of SC, make an MC
replacement based on the gathered imminence
order

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Shepherd Cache Overview

S

Overview of Shepherd Caching

NV, | NV,

SC,
SC)

MC | Ag

CM

"I'E,ﬁl,*ﬂ‘“ﬁ,ﬂlﬁl,ﬁi

|
I
|
I
|
|
|
|
|
|
I
|
A..j |
|
|
|
|
|
|
|
|
I
|
I
|
|

Ag Ay As A7 AgAg |

Ty, - ——

To emulate MC with 4 ways per set and 2 SC
ways per set

To gather imminence order add a counter
matrix (CM)

CM has one column per SC way to track
imminence order w.r.t to it

CM has one row per SC and MC line as any
of them can be a replacement candidate

Each column has one |[Next Value Counter
(NVC) to track the next value to assign along
column

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

MC

M
ll.‘a.i.‘a. A A A Ay

AgshqAsAgAg Ag

(a) Initial State

NVCs

:

T

sc{ AL 0fe] |
SC_As ele| |
Ay 0l 1]

e Ay ele| i
Az 1|0 i

Ay 202

cM

A A AL AL AL A

(g) A4 added to
optimal order of
5C,5C

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

| 1
W @] e [
- - !
sC) e Ni\s, e i SC
sC| Ag e 1 5C) ?‘*\c SOy
A ! A 1
1 e ! 1 [:

.“"‘-1. F 1 ."I.Jj c 1
MCF—— b omac—— ¥
Ag € i Ag e i
Ay el | Ay el ||
oM M

' :
1

AshpAgAz Ay Ay

As Ay As Ag Ag Ag :

by As
at Sy

inseried

NVCs

|
.

T

s Ag Ole| |
SC Ag 33 :
Ay 0l 1]

Ag ele i

MCF 0] !
Ay 2[2]1

cM i

A Ay Ag Az A Ayl
|

A5AnAgAgAgAg!

(hl Az added to
optimal order of
SC1.5C

increment

Ag A Ap Az A Ay

As Aj Ag Ag Ag Ag : As Ag Asg Ag Ag Ag :

(c) Ax added tw (d) As inserted
the optimal order at S
of 57
oldest (FIFO)
nves [S5]3] nves [0]5]
sc Ag Ole| 1 sc\ g eleli
SC Ag 3|3 : 5C, A, e 0 :
Ay o1 | Ay el 1] |
R 4]4] R e|3]
Az 1 0f Ag e 0]
Ay 212 i Ay e|2 i
CM | CM |
A A Az a L.‘*‘4.i As Ay Ag *"?,f‘ |.A4.i
| |

AsdaAsAgAgAgl 5A;AsA7AL Ag

(i) Az added to
optimal order of
8,850

() Az moves
from 3C to MC
replacing Ag

(e) Ag added to
the optimal order
of S .85

MY Cs |_IF

,
.

|

scf Ag a5
sC| A, clo| !
Ay el 1]

A5 [el3]

MCIx [0
Ag e|2|!

cM i
‘*‘5-'*1.”‘6.‘*‘3.'*1:}*"4.:
|

1

AsAjzAgAgAgiAg

(k' Ag added to
optimal order

NVCs
o] (O
sc| A3 ele

A]

Ag ele
MC iTo

Ay ele

oy

(1 A1 added to
optimal order of
SCha

Ag Ay Ag Az Ay Ay

oldest
|
wves [110] |
R |
sc VA, 0| e i
SC| -""'-T c F 1
1
Al ele i
A5 ele| !

MC

Ag ele i
Ay elef !
CM
1
1
1
1

Ag Ay As Ag AgAg!

(1} Self Replace-
ment (Ag evicts
itself)

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

27

Shepherd cache bridges 32 - 52% of the gap
S ——— —— — ——

Bridging the performance gap

Bridging the LRU-OPT gap

W 1lru=18 (JB}
10 M @ SC-4 bridges 32-52%
9 A& sc-6 (T1E) ngap
 oo=-4 (48E)
o 8 < sce2 (258 @ SC moves closer to
=] M opt-16 () OPT as cache size
juk] e
& increases
S 6-
=T
-
4
3
2 T T 1
512KB 1ME 2MB 4MB
AVQ MPKI over SPEC2000 suite MPKT: Miss Per Kilo Instructions

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

28

Assignment 2
\
1.

Design a single-cycle processor supporting MIPS add, addi, Iw and sw
instructions in Verilog HDL. Please download procO3.v from the
support page and refer it.

2. Verify the behavior of designed processor using following assembly
code
- add $0, $0, $0 # NOP {6'he, 5'de, 5'de, 5'de, 5'de, 6'h20}
- addi $te, $zero, 8 # {6'h8, 5'de, 5'ds, 16'ds}
- sw $to, 4($te) # {6'h2b,5'ds, 5'ds, 16'd4}
- 1w $t1, 4($te) # {6'h23,5'ds, 5'd9, 16'd4}
-+ addi $t2, $t1, 6 # {6'h8, 5'd9, 5'd10,16'h6}

3. Submit your report in a PDF file via E-mail by the next Thursday.

« The report should include a block diagram, a source code in Verilog HDL,
and obtained waveforms of your design.

» E-mail address : report@arch.cs.titech.ac.jp
« E-mail title: Assignment of Advanced Computer Architecture

~ =
! 29

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

