
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

2. Instruction Set Architecture

Ver. 2021-12-12aFiscal Year 2021

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

MIPS R3000 Instruction Set Architecture (ISA)

• Instruction Categories

• Computational

• Load/Store

• Jump and Branch

• Floating Point
• coprocessor

• Memory Management

• Special

R0 - R31

PC

HI

LO

Registers

OP

OP

OP

rs rt rd shamt funct

rs rt immediate

jump target (immediate)

3 Instruction Formats: all 32 bits wide

R format

I format

J format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

MIPS Register Convention and ABI

Name Register

Number

Usage Preserve on

call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

ABI (Application Binary Interface)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

MIPS Arithmetic Instructions

• MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

◼ Each arithmetic instruction performs only one operation

◼ Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination  source1 op source2

◼ Operand order is fixed (destination first)

◼ Those operands are all contained in the datapath’s register
file ($t0,$s1,$s2) – indicated by $

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Machine Language - Add Instruction

• Instructions, like registers and words, are 32 bits long

• Arithmetic Instruction Format (R format):

add $10, $8, $9

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

{6'h0, 5'd8, 5'd9, 5'd10, 5'd0, 6'h20} for add $10, $8, $9

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Exercise

• Compiling a C assignment Using Registers

• f = (g + h) – (i + j);

• The variables f, g, h, i, and j are assigned to the registers
$s0, $s1, $s2, $s3, and $s4, respectively. What is the
compiled MIPS code?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

addi $sp, $sp, 4 # $sp = $sp + 4

slti $t0, $s2, 15 # $t0 = 1 if $s2<15

• Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

◼ Small constants are used often in typical code

◼ Possible approaches?

◼ put “typical constants” in memory and load them

◼ create hard-wired registers (like $zero) for constants like 1

◼ have special instructions that contain constants !

◼ The constant is kept inside the instruction itself!

◼ Immediate format limits values to the range +215–1 to -215

{6'h8, 5'd0, 5'd8, 16'd3} for addi $8, $0, 3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Instruction Level Parallelism (ILP)

(1)

(2)

(3)

(4)
ILP = 4/3 = 1.33

add $8, $3, $5 (1)

addi $9, $8, 1 (2)

addi $10, $5, 1 (3)

add $11, $10, $9 (4) data
dependency

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Computer Memory

• Read-only memory (ROM)

• Random-access memory (RAM)

We use 8K word memory.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Machine Language - Load Instruction

• Load/Store Instruction Format (I format):

lw $t0, 24($s2)

op rs rt 16 bit offset

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000

+ . . . 1001 0100

. . . 1010 1100 = 0x120040ac

0x120040ac$t0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Exercise

• Compiling an Assignment When an Operand Is in Memory

• g = h + A[8];

• Let’s assume that A is an array of 100 words and the
compiler has associated the variable g and h with the
registers $s1 and $s2 as before. Let’s also assume that the
starting address, or base address, of the array is in $s3.
Compile this C assignment statement.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

MIPS Memory Access Instructions

• MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

• The data is loaded into (lw) or stored from (sw) a register
in the register file – a 5 bit address

• The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

• A 16-bit field meaning access is limited to memory locations
within a region of 213 or 8,192 words (215 or 32,768 bytes)
of the address in the base register

• Note that the offset can be positive or negative

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Exercise

• Compiling Using Load and Store

• A[12] = h + A[8];

• Assume variable h is associated with register $s2 and base
address of the array A is in $s3. What is the MIPS
assembly code for the C assignment statement?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Instruction Level Parallelism (ILP)

(1)

(2)

(4)

(3)

lw $t0, 32($s3) (1)

add $t0, $s2, $t0 (2)

sw $t0, 48($s3) (3)

lw $t1, 32($s4) (4)

data
dependency

?

ambiguous
data dependency

?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

MIPS Control Flow Instructions

• MIPS conditional branch instructions:

bne $s0, $s1, Lbl # go to Lbl if $s0$s1
beq $s0, $s1, Lbl # go to Lbl if $s0=$s1

• Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1

add $s3, $s0, $s1
Lbl1: ...

◼ Instruction Format (I format):

op rs rt 16 bit offset

◼ How is the branch destination address specified?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

RISC – Reduced Instruction Set Computer

• RISC philosophy

• fixed instruction lengths

• load-store instruction sets

• limited addressing modes

• limited operations

• RISC-I, MIPS, DEC Alpha, ARM, RISC-V, …

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

CISC - Complex Instruction Set Computer

• CISC philosophy

• ! fixed instruction lengths

• ! load-store instruction sets

• ! limited addressing modes

• ! limited operations

• DEC VAX11, Intel 80x86, …

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Sample circuit 1

• 4-bit counter

• synchronous reset

• negative-logic reset, initialize or reset the value of register cnt to
zero if RST_X is low

+

1

4

CLK

RST_X

cnt4

module counter

cnt
[3:0]

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Sample Verilog HDL Code

8 module top();
9 reg CLK, RST_X;
10 wire [3:0] w_cnt;
11
12 initial begin CLK = 1; forever #50 CLK = ~CLK; end
13 initial begin RST_X = 0; #240 RST_X = 1; end
14 initial #800 $finish();
15 initial begin
16 $dumpfile("wave.vcd");
17 $dumpvars(0, cnt1);
18 end
19 always @(posedge CLK) $write("cnt1: %d %x¥n", RST_X, w_cnt);
20
21 counter cnt1(CLK, RST_X, w_cnt);
22 endmodule
23
24
25 module counter(CLK, RST_X, cnt);
26 input wire CLK, RST_X;
27 output reg [3:0] cnt;
28
29 always @(posedge CLK) begin
30 if(!RST_X) cnt <= #5 0;
31 else cnt <= #5 cnt + 1;
32 end
33 endmodulecounter.v

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Some building blocks of processor datapath

We use 8K word memory.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Datapath of single-cycle processor supporting ADD

op rs rt rd shamt funct

0x800 add $t0, $s1, $s2 [add $8, $17, $18]

IR[15:11]IR[20:16]IR[25:21]

$17 = 3
$18 = 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Datapath of processor supporting ADD and ADDI

IR[20:16]IR[25:21]

$8 = 7

0x804 addi $t1, $t0, 3 [addi $9, $8, 3]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Assignment 1

1. Design a single-cycle processor supporting MIPS add, addi
instructions in Verilog HDL. Please download proc01.v from the
support page and refer it.

2. Verify the behavior of designed processor using following
assembly code
• add $0, $0, $0 # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}

• addi $t0, $zero, 3 # {6'h8, 5'd0, 5'd8, 16'd3}

• addi $t1, $zero, 5 # {6'h8, 5'd0, 5'd9, 16'd5}

• add $t2, $t0, $t1 # {6'h0, 5'd8, 5'd9, 5'd10, 5'd0, 6'h20}

3. Submit your report in a PDF file via E-mail by the end of this
Sunday.

• The report should include a block diagram, a source code in Verilog
HDL, and obtained waveforms of your design.

• E-mail address : report@arch.cs.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Waveform of proc01

