Fiscal Year 2021

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

2. Instruction Set Architecture

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

MIPS R3000 Instruction Set Architecture (ISA)

* Instruction Categories

\

. Registers
« Computational
 Load/Store RO - R31
« Jump and Branch
* Floating Point
* coprocessor ==
* Memory Management w7
 Special LO
3 Instruction Formats: all 32 bhits wide
OP rs rt rd shamt | funct R format
OP rs rt Immediate | format
OP jump target (immediate) J format

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

MIPS Register Convention and ABI

Name Register Usage Preserve on
Number call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $vi 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

ABT (Application Binary Interface)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

MIPS Arithmetic Instructions X
\

« MIPS assembly language arithmetic statement
add $t0, Ssl, S$s2
sub S$t0, $sl, Ss2

= Each arithmetic instruction perrorms only\one operation

= Each arithmetic instruction fits in 32 bits and specifies
exactly three operands
destination <« sourcel | op)source2

= Operand order is fixed (destination first)

= Those operands are all contained in the datapath’s register
. file(st0, $s1, $s2) —indicated by $

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Machine Language - Add Instruction

\
« Instructions, like registers and words, are 32 bits long 2%
* Arithmetic Instruction Format (R format):

@dd©10, 58, E9 O
N>

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

eﬁ: {6'h@, 5'd8, 5'd9, 5'd1e, 5'de, 6'h20} for add $10, $8, $9
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Exercise

« Compiling a C assignment Using Registers

+f=(g+h)-(C1+73);

« The variables f, g, h, i, and j are assigned to the registers
$s0, $s1, $s2, $s3, and $s4, respectively. What is the
compiled MIPS code?

\

MIPS Immediate Instructions

= Small constants are used often in typical code

= Possible approaches?

= put “typical constants” in memory and load them

\

= Create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !

addi sp, Ssp, 4

* Machine format (I format):

Ssp = $sp + 4

op

I's

rt

16 bit immmediate

= The constant is kept inside the instruction itself!

| format

= Immediate format limits values to the range +21>-1 to -21>

{6'h8, 5'de, 5'd8, 16'd3} for addi $8, $0, 3

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Instruction Level Parallelism (ILP) X
\

add $8, $3, $5 (1)

> @
addi ¢$9, $8, 1 (2)
addi $10, %5, 1 (3) <:::>

add $11, %10, $9 (4) gg;anency

ILP=4/3 =133 .@
ﬁlscm:ﬁ Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Computer Memory

* Read-only memory (ROM)
« Random-access memory (RAM)

.| Read
address Read
+| Address data
Instruction |
[31:0]
, Data
Instruction ! Write memory
memory data

We use 8K word memory.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Machine Language - Load Instruction X
\

* Load/Store Instruction Format (I format):

C 1wiSt0, (24 (8s2)

op S rt 16 bit offset
Memory

Oxffffffff

24,, + $s2 = St0 +—— 0x120040ac
... 0001 1000 552 —— Ox12004094
+...1001 0100 050000000
... 1010 1100 = 0x120040ac oioooogogg
0x00000004

Ox00000000

&’ data word address (hex)
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Exercise
N

« Compiling an Assignment When an Operand Is in Memory

* g =h + A[8];

 Let's assume that A is an array of 100 words and the
compiler has associated the variable g and h with the
registers $sl and $s2 as before. Let's also assume that the

starting address, or base address, of the array is in $s3.
Compile this C assignment statement.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

MIPS Memory Access Instructions

\
MIPS has two basic data transfer instructions for %%
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

The data is loaded into (Iw) or stored from (sw) a register
in the register file — a 5 bit address

The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
of fset value

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Exercise
N

« Compiling Using Load and Store

+ A[12] = h + A[8];

 Assume variable h is associated with register $s2 and base
address of the array A is in $s3. What is the MIPS
assembly code for the C assignment statement?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

15

Instruction Level Parallelism (ILP)

AN
1w $t0, 32($s3) (1) <:i:>
dd $t;\\;\£\\§%@ (2)
a , $s2,

| (@
SW $t0, 48($s3) (3)

| 9 /da’ra

' dependency
lw $t1, 32($s4) (4) O
S
ambiguous
data dependency

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

MIPS Control Flow Instructions

\
« MIPS conditional branch instructions: 2%
bne $s0, $sl1, Lbl # go to Lbl if $s0=$sl
beq $s0, $sl1l, Lbl # go to Lbl if $s0=%s1
« Ex: if (i==j) h = i + 7;
bne $s0, $s1, Lbl1l

add $s3, $s0, $si1
Lbll:

= Instruction Format (I format):

op rs rt 16 bit offset

= How is the branch destination address specified?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

RISC - Reduced Instruction Set Computer

\
« RISC philosophy x

» fixed instruction lengths
* load-store instruction sets
* limited addressing modes
* limited operations
« RISC-I, MIPS, DEC Alpha, ARM, RISC-V, ..

K CSC.T433 Advance d Computer Architecture, Department of Computer Science, TOKYO TECH 18

CISC - Complex Instruction Set Computer x
\

« CISC philosophy
| fixed instruction lengths
 |load-store instruction sets
* | limited addressing modes
* Ilimited operations

« DEC VAX11, Intel 80x86, ...

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Sample circuit 1
\

* 4-bit counter
* synchronous reset

* negative-logic reset, initialize or reset the value of register cnt to
zero if RST_X is low

module counter

CLK

RST_X
_— 1
—>
+
4 4
.| ent , cnt
7 7

[3:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Sample Verilog HDL Code

Signals Waves

Time

CLK =0
RST X =1
cnt[3:0] =8

8 module top();
9 reg CLK, RST_X;
10 wire [3:0] w_cnt;

12 initial begin CLK = 1; forever #50 CLK = ~CLK; end
13 initial begin RST_X = @; #240 RST X = 1; end

14 initial #8600 $finish();

15 initial begin

module counter

LK 16 $dumpfile("wave.vcd");

- 17 $dumpvars (9, cntl);

2T x 18 end

—_— 1 19 always @(posedge CLK) $write("cntl: %d %x¥n", RST_X, w_cnt);
- . 20

21 counter cntl1(CLK, RST_X, w_cnt);
22 endmodule

4 e 4 ont 23
7 [3:0] 2 24
25 module counter(CLK, RST_X, cnt);

26 input wire CLK, RST_X;
27 output reg [3:0] cnt;

28

29 always @(posedge CLK) begin

30 if(!RST_X) cnt <= #5 0;

31 else cnt <= #5 cnt + 1;
32 end

counter.v 33 endmodule

Single-cycle implementation of processors

A

« Single-cycle implementation also called single clock cycle 2%
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Some building blocks of processor datapath

4 —

Read
address

Instruction

(31:0) [

Instruction
memory

Sign
extend

_ Read
register 1 Read
i Read data 1
register 2
: Read
Write —
i register daia 2
.| Write
data Registers

We use 8K word memory.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Datapath of single-cycle processor supporting ADD

$17
$18

w

IR[25:21]

IR[20:16]

IR[15:11]

op

Ir's

rt

rd

shamt

funct

0x800

add $to, $s1, $s2

[add $8, $17, $18]

PC

-/

:}ndd
Ry

Read

*| address

Instruction
[31:0]

Instruction

memory

Instruction [25:21] Read
register 1 Read
Instruction [20:16] Pead data 1

r " | register 2
—i
| write Read
Instruction register
* >

T e Write

data Registers

data 2 | S

> ALU

Zero

AL
result

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

24

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

25

Datapath of processor supporting ADD and ADDI

IR[25:21]

IR[20:16]

op

I'S

It

16 bit immediate

Ox804

addi $ti1, $te, 3

[addi $9, $8, 3]

| format

PC

>

$8 = 7

_ | Read
" | address

Instruction
[31:0]

Instruction
memaory

Instruction [25:21]

Instruction [20:16]

—

L.,

Instruction [15:11]

Instruction [15:0]

+ i 3

Read

register 1 Read R

Read data 1 2

register 2 > ero
ALU a1

Write dzteaag — result

register

Write d

data Registers

l 6 | sign 32
extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

26

Assignment 1
\
1

Design a single-cycle processor supporting MIPS add, addi
instructions in Verilog HDL. Please download procOl.v from the
support page and refer it.

2. Verify the behavior of designed processor using following
assembly code
add $0, $0, $@ # NOP {6'he, 5'de, 5'de, 5'de, 5'de, 6'h20}
addi $te, $zero, 3 # {6'h8, 5'de, 5'd8, 16'd3}
addi $t1, $zero, 5 # {6'h8, 5'de, 5'd9, 16'd5}
add $t2, $t@, $t1 # {6'he, 5'd8, 5'd9, 5'd1@, 5'de, 6'h20}
3. Submit your report in a PDF file via E-mail by the end of this
Sunday.

« The report should include a block diagram, a source code in Verilog
HDL, and obtained waveforms of your design.

* E-mail address : report@arch.cs.titech.ac. jp

~ =
! 27

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Waveform of procOl

Bl cTKWave - N:¥Lecture¥advance¥2018%¥wave.ved
File Edit Search Time Markers View Help

=
] =

& Q& & . 9 kel <9 & |Fomiossc To:[600 ns &2 | Marker: 297300 ps | Cursor: 10200 ps

v §5T Signals Waves
5 Time i

CLK=I
imem B i E————————
regfile Bogedese /80099094 g L —
ir[31:0] = | CEEENCTETEFT R B "T-F 7171
rs 0] - |
rtla:0] =
rd[4:e] = e T s
rrs[31:0] =| |38 P
rrt[31:0] =
— result[31:8] =
Type |Signals
wire CLK
wire RST_X

wire ir[31:0]

reg pc[31:0]
wire rd[4:0]

wire result[31:0]
wire rrs[31:0]
wire rrt[31:0]
wire rs[4:0]

wire rt[4:0]

