Fiscal Year 2021

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

1. Design and Analysis of Computer Systems

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Syllabus (1/3)

Course description and aims

This course aims to provide students with cutting-edge technologies and future trends of computer architecture with focusing on a
microprocessor which plays an impertant role in the downsizing, personalization, and improvement of performance and power consumption of
computer systems such as PCs, personal mobile devices, and embedded systems.

In this course, first, along with important concepts of computer architecture, students will learn from instruction set architectures to
mechanismes for extracting instruction level parallelism used in out-of-crder superscalar processcors. After that, students will learn mechanisms
for exploiting thread level parallelism adopted in multi-processors and multi-core processors.

Student learning outcomes

By taking this course, students will learn:

(1) Basic principles for building teday’s high-performance computer systems

[2) Mechanisms for extracting instruction level parallelism used in high-performance microprocessors
(3) Methods for exploiting thread level parallelism adopted in multi-processors and multi-core processors
(4) New inter-relaticnship between scftware and hardware

Keywords

Computer Architecture, Processor, Embedded System, multi-processor, multi-core processor

Competencies that will be developed

+ Specialist skills

Class flow

Before coming to class, students should read the course schedule and check what topics will be covered. Required learning should be
completed outside of the classroom for preparation and review purposes.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (2/3)

Texthook(s)

John L. Hennessy, David A, Patterscn. Computer Architecture A Quantitative Approach, Fifth Edition. Morgan Kaufmann Publishers Inc,, 2012

Reference books, course materials, ete.

William James Dally, Brian Patrick Towles. Principles and Practices of Interconnection Networks. Morgan Kaufman Publishers Inc., 2004,

Assessment criteria and methods

Students will be assessed on their understanding of instruction level parallelism, multi-processeor, and thread level parallelism. Students’
course scores are based on the mid-term report and assignments (40%), and the final report (60%4).

Related courses

CSC.T362 : Computer Architecture
CSC.T341 : Computer Legic Design

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Mo prerequisites are necessary, but enrollment in the related courses is desirable.

Contact information (e-mail and phone) Notice : Please replace from "[at]"” to "@"(half-width character).

Kise Kenji: kise[at]c.titech.ac.jp

Office hours

Contact by e-mail in advance to schedule an appointment.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Processor fabrication: ingot and wafer

_—"‘,—\?1

Silicon Ingot Wafer

Silicon, the most abundant element
on earth except for oxygen, is used because
it is a natural semiconductor.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Processor fabrication: wafer and die

N a——— 7
\,""»6;;‘:‘.--'-ﬂh.')
L SRS RSN EE R,

A S SN SR B M R 4 S s,
ANERST g L3 2N B EE e N Ry BN EE WEs $i s = I

—
—_—— _

Intel, Industry-Leading Transistor Performance Demonstrated on Intel’s 90-nanometer Logic Process

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Processor fabrication: die and packaging

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

The birth of microprocessors

Name Year # of transistors
Intel 4004 1971 2,250

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Moore's Law
_‘7 ~\’—-\ R e SRS gy

* Moore's law is the observation that the number of
transistors in a dense integrated circuit doubles about
every two years. The observation is named after Gordon
Moore, the co-founder of Fairchild Semiconductor and
Intel, whose 1965 paper described a doubling every year in
the number of components per integrated circuit, and
projected this rate of growth would continue for at least
another decade. In 1975, looking forward to the next
decade, he revised the forecast to doubling every two
years. The period is often quoted as 18 months because of
a prediction by Intel executive David House (being a
combination of the effect of more transistors and the
transistors being faster).

@3 WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Moore's Law
\ N ‘—\ | ——

VISUALIZING PROGRESS

'
I] I e If the transistors in @ microprocessor were represented by people,
ra | the following timeline gives an idez of the pace of Moore’s Law.

2,300 134,000 32 Million 1.3 Billion
Average music hall capacity Large stadium capacity Populaticn of Tokyo Population of China

1970 1990 2000 2011

Intel 4004 Intel 286 Pentium Il Core i7 Extreme Edition

Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore’s Law.

Moore’s Law

Moore’s Law states that the transistor density on integrated
circuits doubles about every two years. Moore's Law has been
amazingly accurate over time. In 1971, the Intel 4004 processor
held 2,300 transistors. In 2005, the Intel® Itanium® processor
held more than 1 billion transistors. Intel continues to drive
Moore’s Law, increasing functionality and performance, and
helping to bring growth to industries worldwide.

286 processor

5 3
] 2
8 g
g g
a a8
g $

1970 1975
Year of Introduction

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Growth in clock rate of microprocessors

10,000
Intel Pentium4 Xeon Intel Nehalem Xeon
3200 MHz in 2003 3330 MHz in 2010
Intel Pentium ||
1000 MHz in 2000
1000 - : : .
Digital Alpha 21164A
500 MHz in 1996
N - 1%/year
L Digital Alpha 21064 -
% 150 MHz in 1992
® 100 -
3 MIPS M2000
o 25 MHz in 1989 .-
40%/year
10- gttt SUnASPARC i
''''''''' 16.7 MHz in 1986
Digital VAX-11/780
5 MHz in 1978
15%/year
1

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

From CAQA 5™ edition

Clock rate is mainly determined by x
\

« Switching speed of gates (transistors)
* The number of levels of gates

» The maximum number of gates cascaded in series in any
combinational logics.

* In this example, the number of levels of gates is 3.
* Wiring delay and fanout

— |
i Register
Register AND gate

OR gate _:>_

AND gate

~ =
@ 11

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Growth in processor performance

100,000
Intel Xecn 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xecn 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz 24129
Intel Core Duo Extreme 2 cores, 3.0 GHz - ?1,371
10.000 Intel Core 2 Extreme 2 cores, 2.9 GHz =={9,
T T T L I I, IIImI,mOTmmIImImeITImTTT MmN A D Athlon 64 B GHZ F e
! AMB’ Athlen, 2.6 G%*z -
Intel Xeon EE 3.2 GHz
r=) Intel DBSOEMVA motherboard (3,06 GHz, Pentium 4 processor with Hyper-Threading Technology) 6,043 6.681
,Ce IBM Powerd, 1.3 GHz
: Intel VC820 motherboard, 1.0 GHz Pentium il precessor
g Professional Woerkstation XP1000, 667 MHz 21264A
' 1.267
é OO0 ~>rrervrerernsnsrsssenseamsunanisssersseransrrasnss IR ARIGPRIVEL DAON H/OTH, SIRMHZ 21294, S FEEN O L CORIIE cn o
=
4
= 22%/year
@D
8 -
S 0] B SRR S SRR R SRS o+ S el g M R el B A I R A e 1 L P e i ey o
£
T
o]
=
& IBM RS6000/540, 30 MHz,
MIPS M2000, 25 MHz 18
MIPS M/120, 16.7 MHz 13
10 R R P B T T T T TS 1 D i T B P P P A T T O L A P T e LT P P A T e T T oL AT oy T L T L T I e P SRR YT
AX-11/780, 5§ MHz
1 £

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

From CAQA 5t edition

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Which is faster?

\
From Tokyo to Hiroshima x

Time & Max Throughput
Cost Speed Passengers (Spee% xpP)

: 1:20 800km/h 85,510
Boeing 737 | 35 000yen | (503km/h) | 170 (503 x 170)

. 4:00 | 270km/h 266,500
Nozomi: | 18 000yen | (205km/h) 1300 | (205 x1,300)

+ Time to run the task (ExTime)

- Execution time, response time, latency

- Tasks per day, hour, week, sec, ns ...
(Performance)
- Throughput, bandwidth

@3 Based on the lecture slide of David E Culler
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

B

Defining (Speed) Performance x
\

* Normally interested in reducing

« Response time (execution tfime) — the time between the start and
the completion of a task or a program

« Important to individual users
« Thus, to maximize performance, need to minimize execution time

performance, = 1 / execution_timey

If X is n times faster than Y, then

performancey execution_timey .
performancey execution_timey

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Performance Factors x
\

CPU execution time _ # CPU clock cycles .
= x clock cycle time
for a program for a program
or
CPU execution time ____# CPU clock cycles for a program __
for a program clock rate

= Can improve performance by reducing either the length of the clock cycle
or the number of clock cycles required for a program

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

16

Performance Factors x
\

CPU execution time _ ___# CPU clock cycles for a program __
for a program clock rate
Performance = clock rate x 1/ # CPU clock cycles for a program

for a program

« Performance = f x IPC int flag = 1;
f: frequency (clock rate) int foo(){
- IPC: retired instructions per cycle } while(flag);

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Syllabus (3/3)

Course schedule/Required learning

Class 1

Class 2

Class 3

Course schedule

Design and Analysis of Computer Systems

Instruction Set Architecture

Memory Hierarchy Design

Required learning

Understand the basic of design and analysis of
computer systems.

Understand the examples of instruction set
architectures

Understand the organization of memery hierarchy
designs

Class 4

Class 5

Class &

Class 7

Class &

Class &

Class 10

Pipelining

Instruction Level Parzllelism:

Instruction Level Parzllelism:

Instruction Level Parzllelism:

Instruction Level Parzllelism:

Instruction Level Parallelism:

Speculation

Instruction Level Parallelism:

Concepts and Challenges

Instruction Fetch and Branch Prediction

Advanced Techniques for Branch Prediction

Dynamic Scheduling

Exploiting ILP Using Multiple Issue and

Out-of-order Execution and Multithreading

Understand the idea and organization of pipelining

Understand the idea and requirements for exploiting
instruction level parallelism

Understand the organization of instruction fetch and
branch predictions to exploit instruction level
parallelism

Understand the advanced technigues for branch
prediction to exploit instruction level parallelism

Understand the dynamic scheduling to exploit
instruction level parallelism

Understand the multiple issue mechanism and
speculation to expleit instruction level parallelism

Understand the out-of-order execution and
multithreading to exploit instruction level parzllelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

19

From multi-core era to many-core era

S

Many-core Era
Massively parallel
applications
] 1004
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[l 1 [l 1 [l [l [l 1 [l 1 [l
1 | 1 1 1 1 1 1 1 1 1
2003 2005 2007 2009 201 2013

Figura 1: Currant and expacted eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Pollack's Rule \
\
» Pollack's Rule states that X

microprocessor "performance increase due to
microarchitecture advances is roughly proportional
to the square root of the increase in complexity".

B=D WIKIPEDIA

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

From multi-core era to many-core era

EV6 EV6 EV6
Ev4
EVE- EV6 EV6 EV6
EVS
EVE EV6 EV6 EV6

Figure 1. Relative sizes of the cores used in
the study

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Intel Sandy Bridge, January 2011

S ‘\;4—\ —

e 4 core

System
Agent &
Memory

. Processor . Controller

. Graphics

including
I ¥13 DM, Display
l 1w fuliE , and Misc. I/0

*Shared L3 C

d o '
asss Memory Controller 1/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Intel Skylake-X, Core i9-7980XE, 2017

18 core

S

CORE i9

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

2021.11 Intel Alder Lake processor

Scalable Client Architecture

Desktop Mobile Ultra Mobile

LGA1700 BGA Type3 BGA Typed4 HDI
Socket 50x25x1.3mm 285x19x 1.1mm

Syllabus (3/3)

Course schedule/Required learning

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 2

Class 10

Course schedule

Design and Analysis of Computer Systems

Instruction Set Architecture

Memory Hierarchy Design

Pipelining

Instruction Level Parzllelism: Concepts and Chellenges

Instruction Level Parzllelism: Instruction Fetch and Branch Preadiction

Instruction Level Parzllelism: Advanced Techniques for Branch Prediction

Instruction Level Parallelism: Dynamic Scheduling

Instruction Level Parzllelism: Expleiting ILP Using Multiple Issue and
Speculation

Instruction Level Parzllelism: Out-of-order Execution and Multithreading

Required learning

Understand the basic of design and analysis of
computer systems.

Understand the examples of instruction set
architectures

Understand the organization of memary hierarchy
designs

Understand the idea and organization of pipelining

Understand the idea and requirements for exploiting
instruction level parallelism

Understand the organization of instruction fetch and
branch predictions to exploit instruction lavel
parallelism

Understand the advanced techniques for branch
prediction to exploit instruction level parallelism

Understand the dynamic scheduling to exploit
instruction level parallelism

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Understand the out-of-order execution and
multithreading to exploit instruction level parzllelism

Class 11

Class 12

Class 13

Class 14

Multi-Processor: Distributed Memory and Shared Memory Architecture

Thread Level Parzllelism: Coherence and Synchronization

Thread Level Parallelism: Memory Consistency Model

Thread Level Parallelism: Interconnection Network and Man-core
Processors

Understand the distributed memeory and shared
memory architecture for multi-processors

Understand the coherence and synchronization for
thread level parallelism

Understand the memory consistency medel for thread
level parallelism

Understand the interconnection network and many-
core processors for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Adaptive Computing Research Initiative (ACRi) x
\

« Theaim
* Aiming to develop the high-performance Adaptive Computing Systems that
utilize FPGAs

« Working out to distribute the FPGA-related technologies, including our
developed systems, as an outreach activity for research results

* Main research theme
1. Development for FPGA accelerator to speed up processing of AT eftc.
2. Development for FPGA accelerators and FPGA systems for IoT.
* Activity
« Establishment Date: April 151 2020
« Activity period : First period 3 years

The Adaptive Computing Research Initiative is an organization
to seek out and research ways to utilize FPGAs.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Please apply for your user account on this site today
\

« https://gw.acri.c.titech.ac.jp/wp/manual/apply-for-account

o MR
ACRIi L—LDF7HD > MEREENZE

D2020.08.11 ©2020.06.30

0O B%x mua)

ACRi JL— D15

£5CF

1. PHhOI> boeRsE R

« BEIA-LADAR

« TADY NEBOSE Ta-REAVFFURIER
2. OJ4 YBEVSATL—ZADEE TA—Sh

" TREATL oS U — S RER

« ACRi OH—){
P> O O A7 720

O«
| BRI A —ANDAS
BETBCE. [T RORE] DU RSy S B 0D HnERA—S ACRI JL— ORI

(BIZFEY—) IDTARERDA—2) T ITALTIIEZN, BEDBACE. OF12
TA—LOETICHD FRI-—T—88] #0Uvy oL TIZELY,

T iR &

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

29

Sample circuit 1
\

* 4-bit counter
* synchronous reset

* negative-logic reset, initialize or reset the value of register cnt to
zero if RST_X is low

module counter

CLK

RST_X
_— 1
—>
+
4 4
.| ent , cnt
7 7

[3:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

31

Sample Verilog HDL Code

Waves

Signals
Time

CLK =@
RST_X=1
cnt[3:8] =6

8
9
10
11
12
13
14
15
module counter 16

17

SN 18
19
RST_X 20
_ 21
* 22
23
24
f cnt cnt 25
[3:0] 26

27
28
29
30
31
32
33

+~

counter.v

module top();
reg CLK, RST_X;
wire [3:0] w_cnt;

initial begin CLK = 1; forever #50 CLK = ~CLK; end
initial begin RST X = 0; #240 RST X = 1; end
initial #8600 $finish();
initial begin
$dumpfile("wave.vcd");
$dumpvars(0, cntl);
end
always @(posedge CLK) $write("cntl: %d %x¥n", RST_X, w_cnt);

counter cntl(CLK, RST_X, w_cnt);
endmodule

/**/

module counter(CLK, RST_X, cnt);
input wire CLK, RST_X;
output reg [3:0] cnt;

always @(posedge CLK) begin
if(!RST_X) cnt <= #5 0;
else cnt <= #5 cnt + 1;
end
endmodule

32

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

33

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

34

