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Growth in clock rate of microprocessors
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From multi-core era to many-core era
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Figure 1. Relative sizes of the cores used in
the study

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36
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Aside: What is a window?

\
« A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instruction window
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(a) Instruction window Instructions to be executed for an application

Large instruction window
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The free lunch is over
S —

* Parallel programming

Free Lunch

Programmers haven't

really had to worry
much about
performance or

concurrency because

of Moore's Law

‘ Why we did not see 4GHz
processors in Market?

‘—\ e B
* Programmers have to worry much about performance and concurrency

The traditional approach
to application
performance was to
simply wait for the next
generation of processor;
most software
developers did not need
to invest in performance
tuning, and enjoyed a
“free lunch” from
hardware
improvements.

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\



Distributed Memory Multi-Processor Architecture

\
* A PC cluster or parallel computers for higher performance \
« Each memory module is associated with a processor

« Using explicit send and receive functions (message passing) to obtain the data
required.

« Who will send and receive data? How?

PC1 PC2 PC3 PC4
Chip Chip Chip Chip
Procl Proc?2 Proc3 Proc4
A A A A
A4 A 4 A 4 A\ 4
Caches Caches Caches Caches
A A A A
Memory Memory Memory Memory
(DRAM) (DRAM) (DRAM) (DRAM)

Interconnection network
ﬁ’ PC cluster
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Shared Memory Multi-Processor Architecture

« All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

* The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

« What are the means to obtain the shared data?
*  What are the advantages and disadvantages of shared memory?

System
Chip Chip Chip Chip
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Main memory (DRAM) I/0
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Shared memory many-core architecture

Single chip integrates many cores (conventional processors) and an
interconnection network.

System
Chip
Core Core Core Core
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network

A 4 A 4

Intel Skylake-X, Core i9-7980XE, 2017 Main memory (DRAM) I/0
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ur steps in creating a parallel program

Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, comm, synch.
Mapping processes to processors

Partitioning
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Adapted from Parallel Computer Architecture, David E. Culler
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Simulating ocean currents
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(a) Cross sections (b) Spatial discretization of a cross section

Model as two-dimensional grids
« Discretize in space and time
 finer spatial and femporal resolution enables greater accuracy

Many different computations per time step
« Concurrency across and within grid computations

« We use one-dimensional grids for simplicity
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Sequential version as the baseline

« A sequential program mainOl.c and the execution result

« Computations in blue color are fully parallel

#define N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = ©;
while (!done) {
float diff = 0;
for (i=1; i<=N; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
diff = diff + fabsf(B[i] - A[i]);
}
if (diff <TOL) done = 1;
for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */

}
}
int main() {
int i;
for (i=1; i<N-1; i++) A[i] = 100+i*i;
solve();
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0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32
0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76
0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50
0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68
0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88
0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80
0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12
0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06
0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26
0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47
0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70
0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95
0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23
0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53
0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85
0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20
0.00 21.59 4@.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58
i=4 i=8
{ {
A[O]| | A[1] || AL2]| | A[3]|| A[4]| | A[B]| | Al61|| AL7]| | Al8] || AL9]
+ +
B[1] || B[2]||BI3]||B[4]||B[5]||B[6]||BL7]||BI8]
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Decomposition and assignment

 Single Program Multiple Data (SPMD)
« Decomposition: there are eight tasks to compute B[i]
« Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0; /* variable in shared memory */

void solve pp (int pid, int ncores) { Computation

int i, done = 0; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores - 1; /* private variable */
while (!done) { Decomposition
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]); B[1] || B[2]| |B[31||B[4]||B[5]||B[6]||B[7]]||BI8]

}
diff = diff + mydiff;

if (diff <TOL) done = 1; .
if (pid==1) diff = o; Assignment

for (i=mymin; i<=mymax; i++) A[i] = B[i];

} Core 1 Core 2

int main() { /* solve this using two cores */
initialize shared data A and B;
create threadl and call solve pp(1, 2);
create thread2 and call solve pp(2, 2);

B[1]||B[2] || B[3]] | B[4] B[5] || B[6]| | B[7]|| BI8]

A }

15



Orchestration

« LOCK and UNLOCK around critical section

« Lock provides exclusive access to the locked data. ﬁ

« Set of operations we want to execute atomically

« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve pp (int pid, int ncores) {
int i, done = 0;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
}
LOCK();
diff = diff + mydiff;
UNLOCK() ;

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = ©;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

/* private variables */
/* private variable
/* private variable

*/
*/

el

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

}
}
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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Key components of many-core processors

« Interconnection network

* connecting many modules on a chip achieving high throughput

and low latency
* Main memory and caches

\

« Caches are used to reduce latency and to lower network traffic

* A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

e Core

System
* High-performance superscalar
processor providing a hardware e L e T e L
meChGniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZaT io n | ; In’zrconnec’rion nef;wor'k .
v v
Main memory (DRAM) I/0
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Sample parallel program using pthread

#include <stdio.h>
#include <pthread.h>
#define N 10000000

int a = 9;

int funcl(){
int i;
for(i=0; i<N; i++){
a++;
}
printf("funcl: %d¥n", a);

};

int func2(){
int i;
for(i=0; i<N; i++){
a++;
}
printf("func2: %d¥n", a);
s

int main(){
pthread_t t1, t2;
pthread_create(&tl, NULL, (void *)funcl, NULL);
pthread_create(&t2, NULL, (void *)func2, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d¥n", a);
return 0;

}
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Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the
architecture.

« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)

« MISD (Multiple Instruction stream, Single Data stream)

« MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream 1 1 uu uu
Data stream 1 1111 1 1111

SISD SIMD MISD MIMD
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Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the
architecture.

« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)

« MISD (Multiple Instruction stream, Single Data stream)

«  MIMD (Multiple Instruction stream, Multiple Data stream)

> ) ) ) m

i

MIMD

AV A 4
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Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the

architecture.
« SISD (Single Instruction stream, Single Data stream)
« SIMD (Single Instruction stream, Multiple Data stream)
« MISD (Multiple Instruction stream, Single Data stream)

Instruction stream 1 1
Data stream 1 1111
SISD SIMD

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22



SIMD Variants

 Vector architectures
« SIMD extensions
* Graphics Processing Units (GPUs)

« SIMD variants exploit data-level parallelism

« Instruction-level parallelism in superscalar processors
« Thread-level parallelism in multicore processors
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Vector architecture

« Computers designed by Seymour Cray starting in the 1970s
* Basic idea:

* Read sets of data elements into "vector registers”

« Operate on those registers

« Disperse the results back into memory

Cray Supercomputer
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DAXPY in MIPS Instructions

Example: DAXPY (double precision a x X +Y)

L.D FO,a ; load scalar a

DADDIU  R4,Rx#512 ; upper bound of what to load
Loop: L.D F2,0(Rx) : load X[i]

MUL.D F2,F2,FO ;ax X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ;ax X[i]+ Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx Rx #8 ; increment index to X

DADDIU Ry Ry #8 ; increment index to Y

SUBBU R20,R4 Rx , compute bound

BNEZ R20,Loop ; check if done

 Regquires almost 600 MIPS operations

Af_a'

I* (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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DAXPY in VMIPS (MIPS with Vector) Instructions X
\

« ADDV.D : add two vectors
« ADDVS.D : addvector to a scalar
e LV/SV . vector load and vector store from address

« Example: DAXPY (double precision a*X+Y)

L.D FO,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2V1FO : vector-scalar multiply

LV V3 Ry ; load vector Y A
ADDV.D V4,v2,V3 ; add u
SV Ry,V4 ; store the result

* Requires 6 instructions
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