Fiscal Year 2020

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

10. Multi-Processor: Distributed Memory and
Shared Memory Architecture
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Datapath of OoO execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

FP ALU

ALU I ALU l Branchl
‘T

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥ —
LIt LIt iityd LI i] [L11T]] LI TTT] [ITTT1]|Instructionwindow
v v v v

|||||||||||||¢||||||"|
Reorder buffer(ROB)
= Register dataflow

A

A
L]

y
L [T 1]

Store

v v
Adr gen. I Adr gen. I
A 4

A 4

queue

\ 4

Data cache |

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 2

Growth in clock rate of microprocessors

ey,

. P — e,
10,000
Intel Pentium4 Xeon !ntel Nehalem Xeon
3200 MHz in 2003 3330 MHz in 2010
Intel Pentium Il
1000 MHz in 2000
1000 4 . senennnes
Digital Alpha 21164A
500 MHz in 1996
) - 1%/year
- Digital Alpha 21064
% 150 MHz in 1992
= [+ 1 1) USRI S— o (SSRGS
3 MIPS M2000
O 25 MHz in 1989 .~
40%/year
i e/ SUN4SPARC
........ 16.7 MHz in 1986
Digital VAX-11/780
5 MHz in 1978
15%/year
1 T T -

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

]

From CAQA 5™ edition

From multi-core era to many-core era

EV6 EV6 EV6
Ev4
EVE- EV6 EV6 EV6
EVS
EVE EV6 EV6 EV6

Figure 1. Relative sizes of the cores used in
the study

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Aside: What is a window?

\
« A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instruction window
| J[8][6]][5]
L L [l 7]

(a) Instruction window Instructions to be executed for an application

Large instruction window

0 I I A

(C) Instruction window Instruction window

||||||||||||||||||||
ﬁ;SCT«B Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

The free lunch is over
S —

* Parallel programming

Free Lunch

Programmers haven't

really had to worry
much about
performance or

concurrency because

of Moore's Law

‘ Why we did not see 4GHz
processors in Market?

‘—\ e B
* Programmers have to worry much about performance and concurrency

The traditional approach
to application
performance was to
simply wait for the next
generation of processor;
most software
developers did not need
to invest in performance
tuning, and enjoyed a
“free lunch” from
hardware
improvements.

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Distributed Memory Multi-Processor Architecture

\
* A PC cluster or parallel computers for higher performance \
« Each memory module is associated with a processor

« Using explicit send and receive functions (message passing) to obtain the data
required.

« Who will send and receive data? How?

PC1 PC2 PC3 PC4
Chip Chip Chip Chip
Procl Proc?2 Proc3 Proc4
A A A A
A4 A 4 A 4 A\ 4
Caches Caches Caches Caches
A A A A
Memory Memory Memory Memory
(DRAM) (DRAM) (DRAM) (DRAM)

Interconnection network
ﬁ’ PC cluster
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Shared Memory Multi-Processor Architecture

« All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

* The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

« What are the means to obtain the shared data?
* What are the advantages and disadvantages of shared memory?

System
Chip Chip Chip Chip
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Main memory (DRAM) I/0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Shared memory many-core architecture

Single chip integrates many cores (conventional processors) and an
interconnection network.

System
Chip
Core Core Core Core
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network

A 4 A 4

Intel Skylake-X, Core i9-7980XE, 2017 Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

Fo

Hwh =

<

ur steps in creating a parallel program

Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, comm, synch.
Mapping processes to processors

Partitioning

|
O
> O A 2
e s r a
c - s ¢ p
0 O h p
m g e i
p) n 2 n Fo "L
0 O) m t g
— s > — e — > — arl — ‘ —
i - n
t QO t t P. P.
: 2 3
: i
o DO 0
n OC "
Sequential Tasks Processes Parallel Processors
computation program

Adapted from Parallel Computer Architecture, David E. Culler
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Simulating ocean currents

00000000 O0O0
0O 0000000 O0O0
0O 0O0OO0O0OO0O0O0OO0O0
00000000 O0O0
00000000 O0O0
OO0 O0OO0O0OO0OO0O0OO0O0
00000000 O0O0
0000000 O0OO0O0
O 0O0OO0O0O0OO0O0OO0O0
00000000 O0O0

\

(a) Cross sections (b) Spatial discretization of a cross section

Model as two-dimensional grids
« Discretize in space and time
 finer spatial and femporal resolution enables greater accuracy

Many different computations per time step
« Concurrency across and within grid computations

« We use one-dimensional grids for simplicity

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sequential version as the baseline

« A sequential program mainOl.c and the execution result

« Computations in blue color are fully parallel

#define N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = ©;
while (!done) {
float diff = 0;
for (i=1; i<=N; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
diff = diff + fabsf(B[i] - A[i]);
}
if (diff <TOL) done = 1;
for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */

}
}
int main() {
int i;
for (i=1; i<N-1; i++) A[i] = 100+i*i;
solve();

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32
0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76
0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50
0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68
0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88
0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80
0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12
0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06
0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26
0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47
0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70
0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95
0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23
0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53
0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85
0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20
0.00 21.59 4@.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58
i=4 i=8
{ {
A[O]| | A[1] || AL2]| | A[3]|| A[4]| | A[B]| | Al61|| AL7]| | Al8] || AL9]
+ +
B[1] || B[2]||BI3]||B[4]||B[5]||B[6]||BL7]||BI8]

13

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

Decomposition and assignment

 Single Program Multiple Data (SPMD)
« Decomposition: there are eight tasks to compute B[i]
« Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0; /* variable in shared memory */

void solve pp (int pid, int ncores) { Computation

int i, done = 0; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores - 1; /* private variable */
while (!done) { Decomposition
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]); B[1] || B[2]| |B[31||B[4]||B[5]||B[6]||B[7]]||BI8]

}
diff = diff + mydiff;

if (diff <TOL) done = 1; .
if (pid==1) diff = o; Assignment

for (i=mymin; i<=mymax; i++) A[i] = B[i];

} Core 1 Core 2

int main() { /* solve this using two cores */
initialize shared data A and B;
create threadl and call solve pp(1, 2);
create thread2 and call solve pp(2, 2);

B[1]||B[2] || B[3]] | B[4] B[5] || B[6]| | B[7]|| BI8]

A }

15

Orchestration

« LOCK and UNLOCK around critical section

« Lock provides exclusive access to the locked data. ﬁ

« Set of operations we want to execute atomically

« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve pp (int pid, int ncores) {
int i, done = 0;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
}
LOCK();
diff = diff + mydiff;
UNLOCK() ;

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = ©;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

/* private variables */
/* private variable
/* private variable

*/
*/

el

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

}
}
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

16

Key components of many-core processors

« Interconnection network

* connecting many modules on a chip achieving high throughput

and low latency
* Main memory and caches

\

« Caches are used to reduce latency and to lower network traffic

* A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

e Core

System
* High-performance superscalar
processor providing a hardware e L e T e L
meChGniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZaT io n | ; In’zrconnec’rion nef;wor'k .
v v
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

Sample parallel program using pthread

#include <stdio.h>
#include <pthread.h>
#define N 10000000

int a = 9;

int funcl(){
int i;
for(i=0; i<N; i++){
a++;
}
printf("funcl: %d¥n", a);

};

int func2(){
int i;
for(i=0; i<N; i++){
a++;
}
printf("func2: %d¥n", a);
s

int main(){
pthread_t t1, t2;
pthread_create(&tl, NULL, (void *)funcl, NULL);
pthread_create(&t2, NULL, (void *)func2, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d¥n", a);
return 0;

}
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

19

Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the
architecture.

« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)

« MISD (Multiple Instruction stream, Single Data stream)

« MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream 1 1 uu uu
Data stream 1 1111 1 1111

SISD SIMD MISD MIMD

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the
architecture.

« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)

« MISD (Multiple Instruction stream, Single Data stream)

« MIMD (Multiple Instruction stream, Multiple Data stream)

>))) m

i

MIMD

AV A 4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the

architecture.
« SISD (Single Instruction stream, Single Data stream)
« SIMD (Single Instruction stream, Multiple Data stream)
« MISD (Multiple Instruction stream, Single Data stream)

Instruction stream 1 1
Data stream 1 1111
SISD SIMD

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

SIMD Variants

 Vector architectures
« SIMD extensions
* Graphics Processing Units (GPUs)

« SIMD variants exploit data-level parallelism

« Instruction-level parallelism in superscalar processors
« Thread-level parallelism in multicore processors

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Vector architecture

« Computers designed by Seymour Cray starting in the 1970s
* Basic idea:

* Read sets of data elements into "vector registers”

« Operate on those registers

« Disperse the results back into memory

Cray Supercomputer

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

DAXPY in MIPS Instructions

Example: DAXPY (double precision a x X +Y)

L.D FO,a ; load scalar a

DADDIU R4,Rx#512 ; upper bound of what to load
Loop: L.D F2,0(Rx) : load X[i]

MUL.D F2,F2,FO ;ax X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ;ax X[i]+ Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx Rx #8 ; increment index to X

DADDIU Ry Ry #8 ; increment index to Y

SUBBU R20,R4 Rx , compute bound

BNEZ R20,Loop ; check if done

 Regquires almost 600 MIPS operations

Af_a'

I* (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

25

DAXPY in VMIPS (MIPS with Vector) Instructions X
\

« ADDV.D : add two vectors
« ADDVS.D : addvector to a scalar
e LV/SV . vector load and vector store from address

« Example: DAXPY (double precision a*X+Y)

L.D FO,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2V1FO : vector-scalar multiply

LV V3 Ry ; load vector Y A
ADDV.D V4,v2,V3 ; add u
SV Ry,V4 ; store the result

* Requires 6 instructions

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

