
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

7. Instruction Level Parallelism:
Dynamic Scheduling

Ver. 2020-12-26aFiscal Year 2020

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Scalar and Superscalar processors

• Scalar processor can execute at most one single instruction per clock
cycle using one ALU.

• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Instruction fetch unit in IF stage

• For high-bandwidth instruction delivery, prediction, and speculation

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC generator

Branch predictor

PC, BHR

Branch Target PC
for recovery

If stage Id stage

+

Taken/
Untaken

PC + 8

8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Exploiting Instruction Level parallelism (ILP)

• A superscalar processor has to handle some flows
efficiently to exploit ILP

• Control flow

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Another obstacle is instruction cache

• Register data flow

• Dynamic scheduling

• Memory data flow

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Exploiting Instruction Level Parallelism (ILP)

(3)

(4)

Data flow graph

Instruction

Data dependence

(3)

(4)

Data flow graph

4 cycles for 4 insns
ILP = 1.0

3 cycles for 4 insns
ILP = 1.33

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

Control flow graph

(1)

(1)(2)

(2)

Control
dependence

Prediction & speculation

What is the solution?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of
insn i.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

5 = 3 + 2 (3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

5 = 3 + 2 (3)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the correct
value.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

5 = 3 + 2 (3)

6 = 5 + 1 (2)

11 = 5 + 6 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Data dependence and renaming

• True data dependence (RAW)

• Name dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)
(3)

(4)

(3)

(4)

(1)

(1)(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R8 = R5 + 2 (3)

R7 = R8 + R4 (4)

RAW

RAW
RAW

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Hardware register renaming

• Logical registers (architectural registers) which are ones defined by
ISA

• $0, $1, … $31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Exercise: register renaming

• Rename the following instruction stream using physical registers
of p9, p10, p11, and p12

I0: sub $5,$1,$2

I1: add $9,$5,$4

I2: or $5,$5,$2

I3: and $2,$9,$1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $5
src2 = $2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $2
src1 = $9
src2 = $1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2
I3: and p12,p10,p1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = $9

src1 = $5
src2 = $4

dst = p10
src1 = p5
src2 = p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
u
x

If B_src1==A_dst, use tag from free tag buffer
I0

I1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

