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Scalar and Superscalar processors

• Scalar processor can execute at most one single instruction per clock 
cycle using one ALU. 

• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction per clock 
cycle by executing multiple instructions using multiple pipelines.

• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor
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Instruction fetch unit in IF stage

• For high-bandwidth instruction delivery, prediction, and speculation
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Exploiting Instruction Level parallelism (ILP)

• A superscalar processor has to handle some flows 
efficiently to exploit ILP

• Control flow

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Another obstacle is instruction cache

• Register data flow

• Dynamic scheduling

• Memory data flow
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Exploiting Instruction Level Parallelism (ILP)
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Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of 
insn i.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

5 = 3  + 2      (3)
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Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally 
written corresponds to instruction j.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

5  = 3  + 2      (3)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)
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Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the correct 
value.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5  = 3  + 2      (3)

26 = 5  + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

5 = 3  + 2      (3)

6  = 5 + 1      (2)

11 = 5  + 6 (4)
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Data dependence and renaming

• True data dependence (RAW)

• Name dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)
(3)

(4)

(3)

(4)

(1)

(1)(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R8 = R5 + 2      (3)

R7 = R8 + R4     (4)

RAW

RAW
RAW
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Hardware register renaming

• Logical registers (architectural registers) which are ones defined by 
ISA

• $0, $1, … $31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique 
physical register dynamically  

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor
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Exercise: register renaming

• Rename the following instruction stream using physical registers 
of p9, p10, p11, and p12 

I0: sub $5,$1,$2

I1: add $9,$5,$4

I2: or  $5,$5,$2

I3: and $2,$9,$1
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Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst  = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
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Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4
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Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $5
src2 = $2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or  p11,p9,p2
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Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $2
src1 = $9
src2 = $1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or  p11,p9,p2
I3: and p12,p10,p1
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Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = $9

src1 = $5
src2 = $4

dst = p10
src1 = p5
src2 = p4
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Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
u
x

If B_src1==A_dst, use tag from free tag buffer
I0

I1
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Pollack’s Rule

• Pollack's Rule states that microprocessor "performance 
increase due to microarchitecture advances is roughly 
proportional to the square root of the increase in 
complexity". Complexity in this context means processor 
logic, i.e. its area.

WIKIPEDIA
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