Fiscal Year 2020

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

7. Instruction Level Parallelism:
Dynamic Scheduling

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Scalar and Superscalar processors
\

« Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

« TIPC (Executed Instructions Per Cycle) can be more than 1.
« using n pipelines is called n-way superscalar

Time (in clock cycles)

200 400 600 800 1000 1200 1400
T T T T T T T - CC1 ccz cCc3 CC4 CC5 CCE6 CC1 ccz2 CC3
Instruct Instruction . Data .
Instruction Data fetch decode (Eszilel access Write back
Pt Reg| ALU Reg n
e AcGaas Instruction | Instruction Executi Data Wirite back
P Instruction Data fetch decode Euon access fite bac
ucti
etc access Instruction | Instruction . Data .
200 ps | fetch Reg |- ALU Reg Execul Virite back
fetch decode cutan access fite bas
.l .
Instruction Data
Re| ALU Re i i
200ps | fetch ° access ° inetniction | Insticton | execuion | 027 | write back
- -———— > -———— > - -
Instruction | Instruction . Data .
200 ps 200ps 200 ps 200 ps 200 ps fetch decode Execution access | VWrite back
Instruction | Instruction . Data .
fetch decode B i access Write back
Instruction | Instruction . Data .
fetch decode =i access Wirite back
Instruction | Instruction . Data .
fetch decode Bzl access Write back

(a) pipeline diagram of scalar processor
(b) pipeline diagram of 2-way superscalar processor

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Instruction fetch unit in IF stage

* For high-bandwidth instruction delivery, prediction, and speculation

If stage

Next PC generator

\

Id stage

Branch Target PC
for recovery

Target address v

A

lPC' BHR

Taken/
Untaken

Branch predictor

Instruction cache

Pipeline registers

\ 4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

»
»

Exploiting Instruction Level parallelism (ILP) x
\

A superscalar processor has to handle some flows
efficiently to exploit ILP
 Conftrol flow

« To execute ninstructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ)
 Another obstacle is instruction cache

* Register data flow
« Dynamic scheduling

* Memory data flow

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Exploiting Instruction Level Parallelism (ILP)

What is the solution?

4 cycles for 4 insns

Prediction & speculation ILP=10
Control

B1 m dependence

BE[/}\
Error check

v T
BZ[}
*C=*C+ (*A + *B) vy

False True (3)

N

Control flow graph
Data flow graph

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Instruction

Data dependence

return

\

3 cycles for 4 insns
ILP =133

Data flow graph

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exercise: what is data dependence

\
+ Draw a data flow graph for each instruction stream %%

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 1

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R3 + 3 (3)

Instruction stream 2

R3 = R2 + 1 (1)
R3 = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 3

R3 = R2 + 1 (1)
R5 = R4 + 2 (2)
R4 = R6 + 3 (3)

Instruction stream 4

Tr

ue data dependence

« Insniwrites aregister that insn j reads, RAW (read after write)
* Program order must be preserved to ensure insn j receives the value of

<

nsn i.
R3 = R3 x R5 (1)
R4 = R3 + 1 (2)

(R3)= R5 + 2 (3)
R7 =(R3)+ R4 (4)

Assume R3=10, R5=3

20 = 10 X 2 (1) 20_ =
21 = 20 + 1 (2) 21 =2

=3 +2 (3) 41 =
26 =(5)+ 21 (4) 5 =

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

X

+
+
+

2
1
21

Assume R3=10, R5=3

(1)
(2)
(4)
(3)

\

Output dependence

A
* Insniand j write the same register, WAW (write after write) 2%

« Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

(R3)= R3 x R5 (1)
R4 = R3 + 1 (2)
(R3)= R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3 Assume R3=10, R5=3
(20)= 10 x 2 (1) (5)=3 +2 (3)
21 = 20 + 1 (2) (20)= 10 x 2 (1)

X
(GH=3 +2 (3) 21 = 20 + 1 (2)
26 = 5 + 21 (4) 41 = 20 + 21 (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Antidependence

« Insnireads aregister that insn j writes, WAR (write after read)

« Program order must be preserved to ensure that i reads the correct

value.
R3 = R3 X R5
R4‘ijﬂai+ 1
(R3)= R5 + 2
R7 = R3 + R4

<

Assume R3=10, R5=3
10 x 2

.+1

20 =
21=

@:

26 =

5

+ 2
+ 21

(1)
(2)
(3)
(4)

Assume R3=10, R5=3

20

5= 3

6
11

10 x 2
+ 2

®+1

6

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

(1)
(3)
(2)
(4)

\

10

Data dependence and renaming

« True data dependence (RAW)

R3 = R3 x R5 (1)

« Name dependences RA = R3 + 1 (2)
 Output dependence (WAW) R8 = R5 + 2 (3)
 Antidependence (WAR) + R4 (4)

R3 = R3 x R5 (1) RAW
R4 = R3 + 1 (2)

R3 = RS + 2 (3) RAW @ @
R7 = R3 + R4 (4)

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Hardware register renaming

\

 Logical registers (architectural registers) which are ones defined by
ISA

« $0, %1, .. $31
 Physical registers
« Assuming plenty of registers are available, p0O, p1, p2, ...

« A processor renames (converts) each logical register to a unique
physical register dynamically

Typical instruction pipeline of scalar processor

Typical instruction pipeline of high-performance superscalar processor

IF

ID

EX

MEM

WB

IF

ID

Renaming

Dispatch

Issue

Execute

Commit

Retire

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Exercise: register renaming

« Rename the following instruction stream using physical registers
of p9, pl0, pl1, and p12

10:
I11:
12:
I13:

sub $5,%$1,%2
add $9,%5,%4
or $5,%5,%2
and $2,%9,%1

\

14

Example behavior of register renaming (1/4) X
\

« Renaming the first instruction I0

Register map table

Cycle 1
Y . -
10: sub $5,%1,%2 1 1
I1: add $9,$5,$4 — %2 2
I2: or $5,%5,%2 3 3
I3: and $2,%$9,%1 4 4
5 Fo->9 | | e » dst = p9
Free tag buffer | 6 | 6ot L srcl = pl
I I 5 = orc2 = p2
13]12|11]10] 9 p=" 8 8
9
Thead 10 I0: sub p9,pl1,p2
dst = $5
srcl = $1 —
src2 = $2

iﬁw .
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Example behavior of register renaming (2/4) x
\

« Renaming the second instruction Il

Register map table

Cycle 2 0 5
I10: sub $5,%$1,%2 1 1
I1: add $9,%5,%4 2 2
I2: or $5,$5,%2 3 3
I3: and $2,$9,%1 4 4
> § 9 1 » dst = plo
6 | 6.t T et - b
freetagbuffer | |- - ;s . arc2 - ba
13112111110 8 8
T g =310
head 16 I0: sub p9,pl,p2
I1: add ple,p9,p4s
dst = $9
srcl = $5 —
src2 = $4

iﬁw .
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Example behavior of register renaming (3/4) X
\

« Renaming instruction I2

Cycle 3

Register map table

0 0
I10: sub $5,%1,%2 ; :
I1: add $9,%5,%4 .]
I2: or $5,%$5,%2 3 3
I3: and $2,%9,%1 ’ 4
g 5 y 9->11
Free tag buffer | =
I e ¥ >
13|12(11 i 8 8
! S 10
e 10
dst = $5
srcl = $5 —
src2 = $2

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

31

...................... » dst = pl1l
.......... srcl = po
> src2 = p2

I10: sub p9,pl,p2
I1: add p1o,p9,ps
I2: or pl1,p9,p2

17

Example behavior of register renaming (4/4)

* Renaming instruction I3

Cycle 4

10:
I1:
I12:
I3:

sub $5,%1,%2
add $9,%5,%4
$5,%$5,%$2
and $2,%$9,%1

or

Free tag buffer

<

13|12
Thead
dst
srcl
src2

Register map table

\

....................... » dst = pl2
.......... srcl = plo
> src2 = pl

° 0
2 N 2—>12
fg“ 3
- 4
5 1
6 B
__ I
e 8 8
> 9 5
10
$2
$9 |
$1
31

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

: sub p9,pl,p2

: add pl1o,p9,ps
: or
: and pl2,pleo,pl

pl1,p9,p2

18

Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

Cycle 1

I0: sub $5,%1,%2

Register map table

—

dst
srcl
src2

dst
srcl
src2

I1: add plo,p5,p4 (Wrong)

0 0
I1: add $9,%5,%4 1 1
I2: or $5,%$5,%2 5 5
13: and $2,%9,31 3 3 | | .
Free tag buffer a4 | A4 g :
O O s "B 5-50
13 12 11 1@ 9) I Sl 6 6
T] 7 7 R
head | “[t-.| 8 8 >
dst _ $5 9 Ul >1@ >
srcl = $1 10
src2 = $2
I0: sub p9,pl,p2
dst = $9
srcl = $5
src2 = $4 — 31

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

19

Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

Cycle 1 Register map table
I0: sub $5,%1,%2 0 0
I1: add $9,%$5,%4 > 1 1
I2: or $5,%$5,%2 > >
I3: and $2,%9,%1 3 3 | e » A dst = p9
Free tag buffer "4 | At : 2 zﬁz ; : E ;
.. "B 5->0 =
13[/12(11110! 9 - 6 6
MT ... Ve 7 » B dst = plo
nead |-l | o g G B_srcl = p9
16 Adst =%$5 | | | | 5 2310 B_src2 = p4
A srcl = $1 10 If B_srcl==A_dst, use tag from free tag buffer
A src2 = $2
I0: sub p9,pl,p2
T1 B_dst = $9 I1: add pleo,p9,ps
B srcl = $5
= $4 — 31

ﬁw B src2
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Pollack's Rule

\

* Pollack’s Rule states that microprocessor "performance 2%
increase due to microarchitecture advances is roughly
proportional o the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

? WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

22

