
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

5. Instruction Level Parallelism: Concepts and
Challenges

Ver. 2020-12-16aFiscal Year 2020

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Four stage pipelined processor supporting ADD, which does not adopt
data forwarding (proc06.v, Assignment 3)

+

pc
If_IR

4

pc

If stage Id stage

Id_RRS

Id_RRT

Id_RS

Id_RT
IdEx_RRS

E
x
_
R
S
L
T

Ex stage Wb stage

IfId IdEx ExWb

ExWb_RSLT

Id_RD

+

imem

r
e
g
f
i
l
e

IdEx_RRT

IfId_IR

IdEx_RD ExWb_RD

ExWb_RD

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Single-cycle and pipelined processors

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Scalar and Superscalar processors

• Scalar processor can execute at most one single instruction per clock
cycle using one ALU.

• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Exercise: datapath of a 2-way superscalar

• Datapath of a 2-way superscalar processor supporting ADD,
which does not adopt data forwarding

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Assignment 4

1. Design a four stage pipelined 2-way superscalar processor supporting
MIPS add instruction in Verilog HDL. Please download proc06.v from
the support page and refer it.

2. Verify the behavior of designed processor using following assembly
code
assuming initial values of r[1]=22, r[2]=33, r[3]=44, and r[4]=55
• add $0, $0, $0 #

• add $0, $0, $0 #

• add $1, $1, $1 #

• add $2, $2, $2 #

• add $3, $3, $3 #

• add $4, $4, $4 #

3. Submit your report in a PDF file via E-mail by the beginning of the next lecture.

• The report should include a block diagram, a source code in Verilog HDL, and
obtained waveforms of your design.

• E-mail address : report@arch.cs.titech.ac.jp

• E-mail title: Assignment of Advanced Computer Architecture

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Exploiting Instruction Level parallelism (ILP)

• A superscalar processor has to handle some flows
efficiently to exploit ILP

• Control flow

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Another obstacle is instruction cache

• Register data flow

• Memory data flow

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

MIPS Control Flow Instructions

• MIPS conditional branch instructions:

bne $s0, $s1, Lbl # go to Lbl if $s0$s1
beq $s0, $s1, Lbl # go to Lbl if $s0=$s1

• Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1

add $s3, $s0, $s1
Lbl1: ...

◼ Instruction Format (I format):

op rs rt 16 bit offset

◼ How is the branch destination address specified?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Datapath of processor supporting ADD, ADDI, LW, SW, BNE, BEQ

IR[20:16]IR[25:21]

$8 = 7
$9 = 7
imm = -3

0x810 beq $t0, $t1, Lb [beq $8, $9, Lb]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Why do branch instructions degrade IPC?

• The branch taken / untaken is determined in execution stage of the
branch.

• The conservative approach of stalling instruction fetch until the branch
direction is determined.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Note that because of a branch instruction, only one instruction is executed in cc4 and no
instructions are executed in CC6 and CC7. This reduces the IPS.

Control dependency

2-way superscalar processor executing instruction sequence with a branch

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Deeper pipeline

• In conservative approach, IPC degradation will be
significant by deeper pipeline

IF ID1 EX MEM WB1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10 cc11 cc12 cc13 cc14

Control dependency

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

ID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Branch predictor

• A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

• A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or 0.

• Let’s guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Prediction Accuracy of weather forecasts

Tomorrow will be rainy?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Sample program: vector add

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++)
C[i] += (A[i] + B[i]);

}

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False True

B1

B2

B3

i = 0

Control flow graph

B1 B2 B2 B2 B2 B3

B3 B3 B3 B2

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

Taken (1) Taken (1) Taken (1) Not Taken (0)

Executed instruction sequence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Simple branch predictor: Branch Always

• How to predict

• It always predicts as 1.

• How to update

• Nothing cause it does not use any memory.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Simple branch predictor: 2bit counter

• It uses two bit register or a counter.

• Hot to predict

• It predicts as 1 if the MSB of the register is one, otherwise predicts as 0.

• How to update the register

• If the branch outcome is taken and the value is not 3, then increment the
register.

• If the branch outcome is untaken and the value is not 0, then decrement
the register.

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken

2 bit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Sample program: vector add with two branches

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

0 1 0 1 0 1 0 0

Executed instruction sequence

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

Control flow graph

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Simple branch predictor: bimodal

• Program has many branch instructions. The behavior may depend on
each branch. Use one counter for one branch instruction

• How to predict

• Select one counter using PC, then it predicts 1 if the MSB of the
register is one, otherwise predicts 0.

• How to update

• Select one counter using PC, then update the counter same manner
as 2bit counter.

Pattern History Table (PHT)

Program
Counter

…

2n entry

Predictionn

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Prediction accuracy of simple branch predictors

Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.

• The accuracy of branch always is about 50%.

• The accuracy of bimodal predictor of 4KB memory is about 88%.

0

10

20

30

40

50

60

70

80

90

100
F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T
-1

IN
T
-2

IN
T
-3

IN
T
-4

IN
T
-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E
R

V
-1

S
E
R

V
-2

S
E
R

V
-3

S
E
R

V
-4

S
E
R

V
-5

A
ve

ra
ge

M
is

pr
ed

ic
ti
on

s
R

at
e

(%
)

Branch Always

2bit counter

Bimodal

8KB hardware budget

