Fiscal Year 2020

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

4. Pipelining

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

ACRi Room demonstration

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Datapath of processor supporting ADD, ADDI, LW, SW

IR[25:21] IR[20:16]
op rs rt 16 bit immediate | format
Ox80c sw $t2, 8(%$to) [sw $10, 8(%$8)]
4—--/
Instruction [25:21] Read
Read - .
PC - ac?dress register 1 Read _
Instruction [20:16] Pead data 1
* - i Zero
Instruction | 0 register 2
1o [M| | write Read | o | >ALU P e Address Tpod
Instruction | | |nstruction [15:11] : register data 2 ﬂ
memory [= ‘
| write d
data Registers _ Data
o Virite memory
data
$8 = 0x10 Instruction [15:0] lﬁ | sign 32
$1 @ = 2 extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Waveform of proc04 (Assignment?2)

Signals Waves
Time 188 ns 388 ns 400 ns EB0 ns
CLK =l
RSN Eeeee—
pcl31:0] =1 | SCCEEEEERH | |/eoooooo4 CEEELEEE CEEEEEE BEEEee18
ir[31:8] = | EESSCEEELEHE = 200G000E ADBEEAAS B0090004 212A0006
opl5:8] =/ |§ (T -
rs[4:8]1=| § e -
rtl4:8] = 0o =
rd[4:8] =| |E2 e]
1mm[31:8] =| |EES e CEEEEr 1
rdst[4:8] =| EE a0 |
rrs[31:8] = (x DBE0E0EA =
rrt[31:8] = |k EEEEEREE =
; oooseeds] |
rslt[31:8] = |k gogogess |
{ dmout[31:08] =t
| wrslt[31:0] =1 bodooeee 08040008
]
* add %9, %0, %0 # NOP {6'h@, 5'd0, 5'do, 5'do, 5'do, 6'h20}
* addi $te, $zero, 8 # {6'h8, 5'do, 5'd8, 16'd8} ¢$to = 8
* sw $to, 4($to) # {6'h2b,5'd8, 5'd8, 16'd4} mem[1l2] = 8
o lw $t1, 4($t0) # {6'h23,5'd8, 5'd9, 16'd4} $t1 = mem[12] = 8

« addi $t2, $t1, 6 # {6'h8, 5'd9, 5'd10,16'd6} $t2 = 8 + 6

Single-cycle implementation of processors

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

struction [15:0]

16@32

0
M
Add u
X
ALL
1
4 @ Add ooyt
Instruction [25:21] Read
Read register 1
address 9 Fead
nstruction [20:16] Read data 1
Instruction s register 2
[31:0] Write Read Address Ff;g
Instruction struction [15:11] | x register data 2
memory [
| Write
data Registers Data

Write memory
data

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Single-cycle implementation of laundry

A
* (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to bex

washed, dried, folded, and put away where each takes 30 minutes.
« Cycle time is 2 hours.
« Sequential laundry takes 8 hours for 4 loads.

6 PM 7 8 9 10 11 12 1 2 AM

L I

Task
» Oo=ll
e

order
c mEE |
5 Jo=l

(90)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Single-cycle implementation and pipelining X
\

« Pipelined laundry takes 3.5 hours just using the same hardware
resources. Cycle time is 30 minutes.

* What is the latency of each load?

Ti 6 PM 7 8 9 10 11 12 1 2 AM .
me 1 711 1] 111
Task
order —
» (6=l
: J0=l__
. 0=l
; mEs
6 PM 7 8 g9 10 11 12 1 2 AM
Time -
| | | | |]
Task l
order —
» o=l
» (5=l
c ol
0 5=

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Single-cycle and pipelined processors

Program

execution 200 400 600 800 1000 1200 1400 1600 1800

order Time J | T T T T | | —

(in instructions)

w $1,100($0) Instuction| geg | apy | Dala - fggg

lw $2, 200($0) 800 ps '”S;ﬁi“” Reg| ALU aE:;is Reg

w $3, 300($0) - 800 ps ™ |istructon

' f———— e
800 ps

Program

execution . 200 400 600 800 1000 1200 1400

order Time ! I 1 T T T T -

(in instructions)

w $1,1000)| | [mes| A | 222 [

e .
w $2, 200($0) 200 ps|™ " |Reg| AU | D2 [Reg
| .
w $3, 300($0) 200 ps | "HCion - NReg | Aw | D2 [Reg
\ B e L

200 ps 200 ps 200 ps 200 ps 200 ps

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Conventional five steps (stages) of MIPS
\

« IF: Instruction Fetch from instruction memory

« ID: Instruction Decode and operand fetch from regfile (register file)

« EX: EXecute operation or calculate address for load/store or calculate
branch condition and target address

« MEM (MA): MEMory access for load/store
« WB: Write result Back to regfile

Add J_ —
AL l
4 EX >Add .
— result
ID 5]
o shirt} | -
Vleft 2) — E
S MEM
.|| Instruction [25:21] Read
PC & 2{?{;%88 reqgister 1 Read M—
Instruction [20‘Z| G] Bead data 1 Z;I:;
i S -
{ | Instruction || i1 o register 2 > ALL
R M Wirite Read oy I_:E'I‘ULIJ[—+| Address Fide::g |
. |
Instruction TAstruction [15:71] | x register dala l-l: (. o '||.|ﬂ
memor 4
1 | write L x| L b4
| -]
WB data Registers A t
Write memory
IF data
Instruction [15:0] 16 sign 32
| extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Towards four stage pipelined one supporting ADD
\

« IF: Instruction Fetch from instruction memory

« ID: Instruction Decode and operand fetch from regfile

« EX: EXecute operation

« WB: Write result Back to regfile

Add >
4
Instruction [25:21] Fead
Read register 1
PC address 9 Read
Instruction [20:15] Read data 1
Instruction M register 2
. —
[31:0] _ Read
| Write data 2
Instruction Instruction register ata = |
memory >
o WTite
data Registers

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Pipeline registers

« add $0, $0, $0 # NOP, $0 <= 0 + ©
e add $1, $1, $1 # $1 <= 22 + 22
e add $2, $2, $2 # $2 <= 33 + 33
e add %0, %0, %0 # NOP
e add %0, %0, %0 # NOP

e add $0, $0, %0 # NOP
assuming initial values of r[1]=22 and r[2]=33

1
Add - >
4
1
| Instruction [25:21] Fead
Read | register 1
PC address 9 Read
Instruction [20:15] Read data 1
Instruction M register 2
31:0
[31:6] | write dﬂfag
Instruction Instruction register ata = |
memory >
T | Write
data Registers

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

15

Single-cycle and pipelined processors

Program

execution 200 400 600 800 1000 1200 1400 1600 1800

order Time J | T T T T | | —

(in instructions)

w $1,100($0) Instruction| gog [Fapy | Data fggg

lw $2, 200($0) 800 ps '”S;ﬁi“” Reg| ALU aE:;is Reg

w $3, 300($0) - 800 ps ™ |istructon

L ——— .
800 ps

Program

execution . 200 400 600 800 1000 1200 1400

order Time ! I 1 T T T T -

(in instructions)

w $1,1000)| | [mes| A D22 [

e .
w $2, 200($0) 200 ps|™ " [Reg| AL | P [Reg
| .
w $3, 300($0) 200 ps | "Heion - Reg | AU | P2t [Reg
\ B e L

200 ps 200 ps 200 ps 200 ps 200 ps

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

16

Assignment 3

1. Design a four stage pipelined processor supporting MIPS add

page and refer it.
2. Verify the behavior of designed processor using following assembly

code

assuming initial values of r[1]=22, r[2]=33, r[3]=44, and r[4]=55

add
add
add
add
add

$0,
$1,
$2,
$3,
$4,

$0,
$1,
$2,
$3,
$4,

$0
$1
$2
$3
$4

NOP {6'ho@, 5'do, 5'do, 5'do, 5'd9, 6'h20}
H
#
#
#

3. Submit your report in a PDF file via E-mail by the beginning of the next

lecture.

« The report should include a block diagram, a source code in Verilog HDL,
and obtained waveforms of your design.

* E-mail address : report@arch.cs.titech.ac.jp
~@‘Q' * E-mail title: Assignment of Advanced Computer Architecture

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

™

\

instructions in Verilog HDL. Please download procOl.v from the support

17

MIPS Control Flow Instructions

\
« MIPS conditional branch instructions: 2%
bne $s0, $sl1, Lbl # go to Lbl if $s0=$sl
beq $s0, $sl1l, Lbl # go to Lbl if $s0=%s1
« Ex: if (i==j) h = i + 7;
bne $s0, $s1, Lbl1l

add $s3, $s0, $si1
Lbll:

= Instruction Format (I format):

op rs rt 16 bit offset

= How is the branch destination address specified?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Datapath of processor supporting ADD, ADDI, LW, SW, BNE, BEQ

IR[25:21] IR[20:16]
op rs rt 16 bit immediate | format
0x810 beqg $to, $ti1, Lb [beg $8, $9, Lb]
\ NG
>A|:||:| l . M
X
ALU
4_"/ l >Add result !
Instruction [25:21] Read
Read - .
PC " ac?dress register 1 Read _
Instruction [20_: 16] Pead data 1 ;
Instruction | " | register 2 ero
[31:0] [T ,?., _ Read >ﬁ|-'-' ALU Address Head
u Write data 2 _'" result [T data
Instruction | | nstruction [15:11] | x register :
memory | ¢ = 1
| Write -—
data Registers Data
o Virite
$8 = 7 data memory
$9 = 7 Instruction [15:0] 18 [gign | 32
. extend
imm = -3

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

20

