
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

3. Memory Hierarchy Design

Ver. 2020-12-09aFiscal Year 2020

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Datapath of single-cycle processor supporting ADD

op rs rt rd shamt funct

0x800 add $t0, $s1, $s2 [add $8, $17, $18]

IR[15:11]IR[20:16]IR[25:21]

$17 = 3
$18 = 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Datapath of processor supporting ADD and ADDI

IR[20:16]IR[25:21]

$8 = 7

0x804 addi $t1, $t0, 3 [addi $9, $8, 3]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Waveform of proc02

add $0, $0, $0 # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}
addi $t0, $zero, 3 # {6'h8, 5'd0, 5'd8, 16'd3}
addi $t1, $zero, 5 # {6'h8, 5'd0, 5'd9, 16'd5}
add $t2, $t0, $t1 # {6'h0, 5'd8, 5'd9, 5'd10, 5'd0, 6'h20}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

MIPS Memory Access Instructions

• MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

• The data is loaded into (lw) or stored from (sw) a register
in the register file – a 5 bit address

• The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

• A 16-bit field meaning access is limited to memory locations
within a region of 213 or 8,192 words (215 or 32,768 bytes)
of the address in the base register

• Note that the offset can be positive or negative

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Machine Language - Load Instruction

• Load/Store Instruction Format (I format):

lw $t0, 24($s2)

op rs rt 16 bit offset

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000

+ . . . 1001 0100

. . . 1010 1100 = 0x120040ac

0x120040ac$t0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Datapath of processor supporting ADD, ADDI, LW

IR[20:16]IR[25:21]

$8 = 0x10
mem[0x14] = 3

0x808 lw $t2, 4($t0) [lw $10, 4($8)]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality
Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

8

Index

Data (4 word)
Index TagValid

0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words (4KB)

What kind of locality are we taking advantage of?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Four-Way Set Associative Cache

• 28 = 256 sets each with four ways (each with one block)
31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Cache Associativity & Replacement Policy

E

A B C D

Bookshelf

Desk

Book

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.

• When a miss occurs,
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time
• Must have hardware to keep track of when each way’s block was

used
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced
(and reset the other way’s bit)

• Random

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of
Science

• MICRO-40, pp. 445-454, 2007

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to narrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Assignment 2

1. Design a single-cycle processor supporting MIPS add, addi, lw and sw
instructions in Verilog HDL. Please download proc03.v from the
support page and refer it.

2. Verify the behavior of designed processor using following assembly
code

• add $0, $0, $0 # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}

• addi $t0, $zero, 8 # {6'h8, 5'd0, 5'd8, 16'd8}

• sw $t0, 4($t0) # {6'h2b,5'd8, 5'd8, 16'd4}

• lw $t1, 4($t0) # {6'h23,5'd8, 5'd9, 16'd4}

• addi $t2, $t1, 6 # {6'h8, 5'd9, 5'd10,16'h6}

3. Submit your report in a PDF file via E-mail by the beginning of the next
lecture.

• The report should include a block diagram, a source code in Verilog HDL,
and obtained waveforms of your design.

• E-mail address : report@arch.cs.titech.ac.jp

• E-mail title: Assignment of Advanced Computer Architecture

