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Datapath of single-cycle processor supporting ADD

op          rs rt rd shamt funct

0x800   add $t0, $s1, $s2 [ add $8, $17, $18 ]

IR[15:11]IR[20:16]IR[25:21]

$17 = 3
$18 = 4
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Datapath of processor supporting ADD and ADDI

IR[20:16]IR[25:21]

$8 = 7

0x804 addi $t1, $t0, 3 [ addi $9, $8, 3 ] 

op           rs rt 16 bit immediate I  format
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Waveform of proc02

add  $0,  $0,  $0   # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}
addi $t0, $zero, 3  # {6'h8, 5'd0, 5'd8, 16'd3} 
addi $t1, $zero, 5  # {6'h8, 5'd0, 5'd9, 16'd5} 
add  $t2, $t0, $t1  # {6'h0, 5'd8, 5'd9, 5'd10, 5'd0, 6'h20}
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MIPS Memory Access Instructions

• MIPS has two basic data transfer instructions for 
accessing memory

lw $t0, 4($s3)  #load word from memory

sw $t0, 8($s3)  #store word to memory

• The data is loaded into (lw) or stored from (sw) a register 
in the register file – a 5 bit address

• The memory address – a 32 bit address – is formed by 
adding the contents of the base address register to the 
offset value

• A 16-bit field meaning access is limited to memory locations 
within a region of 213 or 8,192 words (215 or 32,768 bytes) 
of the address in the base register

• Note that the offset can be positive or negative
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Machine Language - Load Instruction

• Load/Store Instruction Format (I format):

lw $t0, 24($s2)

op            rs             rt                16 bit offset

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000

+ . . . 1001 0100

. . . 1010 1100 = 0x120040ac

0x120040ac$t0 
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Datapath of processor supporting ADD, ADDI, LW

IR[20:16]IR[25:21]

$8 = 0x10
mem[0x14] = 3

0x808 lw $t2, 4($t0)      [ lw $10, 4($8) ] 

op           rs rt 16 bit immediate I  format
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A Typical Memory Hierarchy
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❑ By taking advantage of the principle of locality
Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)
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8
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Multiword Block Direct Mapped Cache

• Four  words/block, cache size = 1K words (4KB)

What kind of locality are we taking advantage of?
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Four-Way Set Associative Cache

• 28 = 256 sets each with four ways (each with one block)
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Cache Associativity & Replacement Policy
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Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.   

• When a miss occurs, 
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the 
longest time
• Must have hardware to keep track of when each way’s block was 

used 
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced 
(and reset the other way’s bit)

• Random
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Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of 
Science

• MICRO-40,  pp. 445-454, 2007 

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by 
the L1 cache. As a consequence, an L2 cache with LRU replacement 
incurs significantly higher misses than the optimal replacement policy 
(OPT). We propose to narrow this gap through a novel replacement 
strategy that mimics the replacement decisions of OPT.”
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Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions
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OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Assignment 2

1. Design a single-cycle processor supporting MIPS add, addi, lw and sw
instructions in Verilog HDL. Please download proc03.v from the 
support page and refer it. 

2. Verify the behavior of designed processor using following assembly 
code

• add  $0,  $0,  $0   # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}

• addi $t0, $zero, 8 # {6'h8, 5'd0, 5'd8, 16'd8} 

• sw $t0, 4($t0)    # {6'h2b,5'd8, 5'd8, 16'd4} 

• lw $t1, 4($t0)    # {6'h23,5'd8, 5'd9, 16'd4}

• addi $t2, $t1, 6    # {6'h8, 5'd9, 5'd10,16'h6}

3. Submit your report in a PDF file via E-mail by the beginning of the next 
lecture.

• The report should include a block diagram, a source code in Verilog HDL, 
and obtained waveforms of your design.

• E-mail address : report@arch.cs.titech.ac.jp

• E-mail title: Assignment of Advanced Computer Architecture


