Fiscal Year 2019

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

14. Thread Level Parallelism: Memory Consistency

Model
&
www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Key components of many-core processors

* Main memory and caches

« New issues

memory consistency

* Core
* High-performance superscalar
processor providing a hardware et JHL e L e L e
meChaniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZGT io n | ; Infir‘connecﬁon nef;work . |
))
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Orchestration

« LOCK and UNLOCK around critical section
« Lock provides exclusive access to the locked data.
« Set of operations we want to execute atomically

« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve pp (int pid, int ncores) {
int i, done = ©;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
}
LOCK();
diff = diff + mydiff;
UNLOCK() ;

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

= }

Xar—="
D

/* private variables */
/* private variable
/* private variable

*/
*/

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

Synchronization

* Basic building blocks (instructions) :
« Atomic exchange
« Swaps register with memory location
« Test-and-set
« Sets under condition

« Fetch-and-increment
* Reads original value from memory and increments it in memory

« These requires memory read and write in uninterruptable
instruction

* |oad linked/store conditional

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing an atomic exchange EXCH

\
* Load linked/store conditional instructions X

« If the contents of the memory location specified by the load
linked are changed before the store conditional o the same
address, the store conditional fails

« Store conditional instruction
* it returns 1if it was successful and a O otherwise

« EXCHR4,0(R1) ;exchange R4 and O(R1) atomically

try: ADD R3,R4,R0O 5
LL R2,0(R1) 5
SC R3,0(R1) 5
BEQ R3,R0O,try 5
ADD R4,R2,R0 5

move exchange value, R3<=R4
load linked

store conditional

branch if store fails (R3==3)
put load value in R4, R4<=R2

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Implementing Locks using coherence
A

« Spin lock
« Rl is the address of the lock variable and its initial value is O.

« We can cache the lock using the coherence mechanism to maintain
the lock value coherently.

« This code spins by doing read on a local copy of the lock until it
successfully sees that the lock is available (lock variable is 0).

lockit: LD R2,0(R1) ; load of lock
BNE R2,R0,1lockit ; not available-spin if R2==1
ADDI R2,R0O,1 ; load locked value, R2<=1

EXCH R2,0(R1) swap
BNE R2,R0,lockit ; branch if lock wasn’t ©

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

oo

Implementing Unlocks using coherence x
\

* Unlock

« Just resetting the lock variable

unlock: SW R@,0(R1) ; reset the lock, lock variable <= ©

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Implementing Barriers using coherence
\
« This code counts up the arrived threads using a shared variable counter.

« If all threads increments the variable, the last thread set the shared
variable flag to exit the barrier.

BARRIER(){
LOCK();
if (counter == @) flag = @; /* counter and flag are shared data */
counter = counter + 1; /* increment counter */
mycount = counter; /* mycount is a private variable */
UNLOCK () ;
if (mycount == p) {
counter = 0;
flag = 1;
}
else while (flag == 0); /* wait until all threads reach BARRIER */
}

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Problem in multi-core context (consistency) X
\

« Assume that A=0 and Flag=0 initially

« Core1(Cl) writes data into A and sets Flag to tell C2 that data value
can be read (loaded) from A.

« C2 waits till Flag is set and then reads (loads) data from A.
« What is the printed value by C2?

Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Problem in multi-core context x
\

« If the two writes (stores) of different addresses on C1 can be
reordered, it is possible for C2 to read O from variable A.
« This can happen on most modern processors.

« For single-core processor, Codel and Code?2 are equivalent. These
writes may be reordered by compilers statically or by OoO
execution units dynamically.

« The printed value by C2 will be O or 3.

Codel Code?2
A = 3; Flag = 1;
Flag = 1; A = 3;
Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

Problem in multi-core context

« Assume that A=0 and B=0 initially

 Should be impossible for both outputs to be zero.

 Intuitively, the outputs may be 01, 10, and 11.

Cl (Core 1) C2 (Core 2)
A=1; B =1;
print B; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Problem in multi-core context X
\

« Assume that A=0 and B=0 initially
 Should be impossible for both outputs to be zero.
 Intuitively, the outputs may be 01, 10, and 11.

 This is true only if reads and writes on the same core to
different locations are not reordered by the compiler or
the hardware.

e The outputs may be 01, 10, 11, and OO.

Cl (Core 1) C2 (Core 2)
A=1; B =1;
print B; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Memory Consistency Models

\
« A single-core processor can reorder instructions subject only to
control and data dependence constraints

* These constraints are not sufficient in shared-memory multi-
cores
 simple parallel programs may produce counter-intuitive results

« Question: what constraints must we put on single-core
instruction reordering so that
 shared-memory programming is intuitive
 but we do not lose single-core performance?
« The answers are called memory consistency models supported by
the processor

« Memory consistency models are all about ordering constraints on
independent memory operations in a single-core's instruction
stream

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Simple and Intuitive Model: Sequential Consistency X
\

« Sequential consistency (SC) model

Tt constrains all memory operations:
« Worite -> Read
* Write -> Write
« Read -> Read
« Read -> Write
« Simple model for reasoning about parallel programs

* You can verify that the examples considered earlier work
correctly under sequential consistency.

 This simplicity comes at the cost of single-core performance.
« How to implement SC?

« How do we modify sequential consistency model with the
demands of performance?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Relaxed consistency model: Weak Consistency X
\

* Programmer specifies regions within which global memory

operations can be reordered
 Processor has fence or sync instruction:

» all data operations before fence in program order must complete

before fence is executed

* all data operations after fence in program order must wait for

fence to complete
 fences are performed in program order

« Example: MIPS has SYNC instruction

* Implementation of SYNC

* a processor may flush all instructions

when a SYNC instruction is retired
Program

execution \

ﬁw Memory operations within a region can be reordered
c

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

y

- - Fence, Sync

- - Fence, Sync

15

Release Consistency Model

 Further relaxation of weak consistency Region \
A fence instruction is divided into "I eire
. . . egion
« Acquire: operation like lock B
. . —_——_————— Release
« Release: operation like unlock Region
Pr‘ogr‘am C
- Semantics of Acquire: execution

* Acquire must complete before all following memory accesses
« Memory operations in region B and C must complete before Acquire
Semantics of Release:

* all memory operations before Region
Release are complete A Acquire
* Memory operations in region A Region | | Region
and B must complete B C
before Release
~ Release

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Memory Consistency Model

\
* Inthe literature, there are a large number of other consistency %%
models

« Sequential Consistency

« Causal Consistency

* Processor Consistency

« Weak Consistency (Weak Ordering)
« Release Consistency

« Entry Consistency

« It isimportant to remember that these are concerned with
reordering of independent memory operations within a single
thread.

« Weak or Release Consistency Models are adequate

~ =
! 17

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Putting It All Together

18 core

]

CORE 19

X-series

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (3/3)

Course schedule/Required learning

Course schedule

Required learning

Class 1

Design and Analysis of Computer Systems

Understand the basic of design and analysis of computer
Systems.

Class 2

Instruction Set Architecture

Understand the examples of instruction set architectures

Class 3

Memory Hierarchy Design

Understand the organization of memory hierarchy
designs

Class 4

Pipelining

Understand the idea and organization of pipelining

Class 5

Instruction Level Parallelism:

Concepts and Challenges

Understand the idea and requirements for exploiting
instruction level parallelism

Class 6

Instruction Level Parallelism:

Instruction Fetch and Branch Prediction

Understand the organization of instruction fetch and
branch predictions to exploit instruction level parallelism

Class 7

Instruction Level Parallelism:

Advanced Technigues for Branch Prediction

Understand the advanced technigues for branch
prediction to exploit instruction level parallelism

Class 8

Instruction Level Parallelism:

Dynamic Scheduling

Understand the dynamic scheduling to exploit instruction
level parzallelism

Class @

Instruction Level Parallelism:

Speculation

Exploiting ILP Using Multiple Issue and

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Class 10

Instruction Level Parallelism

: Out-of-order Execution and Multithreading

Understand the out-of-order execution and

multithreading to exploit instruction level parallelism

Class 11

Multi-Processor: Distributed

Memeory and Shared Memory Architecture

Understand the distributed memory and shared memonry
architecture for multi-processors

Class 12

Thread Level Parallelism: Coherence and Synchronization

Understand the coherence and synchrenization for
thread level parallelism

Class 13

Thread Level Parallelism: Memory Consistency Model

Understand the memory consistency model for thread
level parzallelism

Class 14

Thread Level Parallelism: Interconnection Network

Understand the interconnection network for thread level
parallelism

Class 15

Thread Level Parallelism: Many-core Processor and Network-on-chip

Understand the many-core processor and network-on-

chip for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Final report
\
1.

For details of the final report, please visit the lecture support page.
http://www.arch.cs.titech.ac.jp/lecture/ACA

2. Submit your final report in a PDF file via E-mail by February 13, 2020

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

