Fiscal Year 2019

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

13. Thread Level Parallelism: Coherence and

Synchronization
f
www.arcrm(}/\/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Final report
\
1.

For details of the final report, please visit the lecture support page.
http://www.arch.cs.titech.ac.jp/lecture/ACA

2. Submit your final report in a PDF file via E-mail by February 13, 2020

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Key components of many-core processors

* Main memory and caches

A parallel program has private data and shared data
New issues are cache coherence

System
Chip
[]
Core Core Core Core
Procl Proc2 Proc3 Proc4
Caches Caches Caches Caches
| Interconnection network
))
\ 4 \ 4
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Caches are used to reduce latency and to lower network traffic

MIPS Direct Mapped Cache Example

« One word/block, cache size = 1K words (4KB)

3130 1312 11 210 BYte
K,//cﬁfset
Hit Tag 20 10 Data
t Index 4
Index Valid Tag Data
0
1
2
-, _ -
_ |
1021 I
1022
1023
120 .32
) :9 What kind of locality are we taking advantage of?

Cache writing policy

« Write-through

 writing is done synchronously both to the cache and to the main

memory. All stores update the main memory.

« Worite-back

« initially, writing is done only to the cache. The write to the main
memory is postponed until the modified content is about to be

replaced by another cache block.

 reduces the required network and memory bandwidth.

« Which policy is better for many-core?

System

Chip

Core

Core

Core

Core

Procl

Proc2

Proc3

Proc4

v s s v
Caches Caches Caches Caches
v v v v
| Interconnection network
))
A 4 \ 4
= Main memory (DRAM) I/0

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Cache Coherence Problem

3
* Processors see different values for shared data u after event 3 2%

« With write-back caches, value written back to memory depends on
which cache flushes or writes back value when

« Processes accessing main memory may see stale (out-of-date) value
« Unacceptable for programming, and its frequent!

@\ /O devices
— @
K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Cache Coherence Problem

* Processors may see different values through their caches

\

« assuming a write-back cache

 after the value of X has been written by A, A's cache
contains the new value, but B's cache and the main memory do

hot

Time

Event

Memory
Cache contents Cache contents contents for
for processor A for processorB location X

0

Processor A reads X

(i

Processor B reads X

Processor A stores ()
mnto X

1
1
| 1 1
0 1 1

Cache Coherence and enforcing coherence %\%
\

 Cache Coherence

* All reads by any processor must return the most recently
written value

« Writes to the same location by any two processors are seen
in the same order by all processors

« Cache coherence protocols

 Snooping (write invalidate / write update)
« Each core tracks sharing status of each block

» Directory based
« Sharing status of each block kept in one location

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Snooping coherence protocols using bus network

\
« Write invalidate
* Onwrite, invalidate all other copies by an invalidate broadcast

« Use bus itself to serialize
« Write cannot complete until bus access is obtained

Contents of Contents of Contents of

Processor activity Bus activity processor A's cache processor B's cache memory location X
0

Processor A reads X Cache miss for X 0 0

Processor B reads X Cache miss for X 0 0 0

Processor A writesa 1 Invalidation for X] 0

to X

Processor B reads X Cache miss for X] I]

« Werite update
« On write, update all copies

~ ==
! :

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Snooping coherence protocols using bus network

\
* Cache lines marked as invalid, shared or modified X
(exclusive)

* The shared state indicates that the block in the private
cache is potentially shared.

» The modified state indicates that the block has been
updated in the private cache; note that the modified state
implies that the block is exclusive.

* Only writes to shared lines need an invalidate broadcast
« After this, the line is marked as exclusive

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Snooping coherence protocols using bus network

C1

c2

C3
c4

5

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place mvalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Snooping coherence protocols using bus network

C1

C2

C3
c4

5

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place mvalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Snooping coherence protocols using bus network

C1

c2

C3
c4

5

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place mvalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Snooping coherence protocols using bus network

C1

c2

C3
c4

C5

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place mvalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

Snooping coherence protocols using bus network

« A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

CPU read hit
Write miss for this block

Invalidate for
this block

Shared
(read only)

CPU read
Place read miss on bus

Shared
(read only)

CPU
_ read CPU
CPU write o, miss read
¥ miss
2 'ﬁ g Place read Tz
=1 ® miss on bus i E @
8|a B2 8
@ |0 = |E O
22 2le 3
& 218
Write miss = |®
for this block

Read miss

for this block Cache state transitions based
on requests from the bus

Exclusive
(read/write)

Exclusive
(read/write)

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus
CPU write hit
CPU read hit

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Snooping coherence protocols using bus network x
\

« The basic coherence protocol
* MSI (Modified, Shared, Invalid) protocol
 Extensions
» MESTI (Modified, Exclusive, Shared, Invalid) protocol
« MOEST (MEST + Owned) protocol

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Directory Protocols X
\

 Snooping coherence protocols are based on the use of bus
network.
What are the protocols for mesh topology NoC?

 Directory protocols

* A logically-central directory keeps track of where the copies
of each cache block reside. Caches consult this directory to
ensure coherence.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Coherence influences cache miss rate

 Coherence misses

« True sharing misses

« Worite to shared block (transmission of invalidation)
 Read

 False sharing misses

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

18

Sequential version as the baseline

« A sequential program mainOl.c and the execution result
« Computations in blue color are fully parallel

#define N 8 /* the number of grids */ 0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32
#define TOL 15.0 /* tolerance parameter */ ©.06 57.55 94.63 116.11 117.10 109.56 85.83 44.62 15.08 0.00 | diff= 55.76
et AT BTeaT 0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50
oat A[N+2], B[N+2]; 0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68
©.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88
void solve () { 0.0 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80
int i, done = ©; 0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12
while (ldone) { 0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06
S HPTE 0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26
float diff = @; 0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47
for (i=1; i<=N; i++) { 0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]); 0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95
diff = diff + fabsf(B[i] - A[i]); ©.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23
0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53
} ©.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85
if (diff <TOL) done = 1; 0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20
for (i=1; i<=N; i++) A[i] = B[i]; ©.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58
for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */ 1=4 1=8
: L L
¥ A[O]| | A[1]| | A[2]| | AL3]|| A[4]| | ALB]| | AL61| | AL7]| | AL8]| | ALO]
int main() { \ v / \ v /
int 1; +, +, X +, +, X
for (i=1; i<N-1; i++) A[i] = 100+i*i; ! !
solve();
} B[1]1||B[2]||B[3]||B[4]||B[5]||Bl6]||B[7]|]|BI[8]

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Decomposition and assignment

 Single Program Multiple Data (SPMD)
« Decomposition: there are eight tasks to compute B[i]
« Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0; /* variable in shared memory */

void solve pp (int pid, int ncores) { Computation

int i, done = 0; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores - 1; /* private variable */
while (!done) { Decomposition
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]); B[1] || B[2]| | B[31||B[4]||B[5]||B[6]]||B[7]]||BI8]

}
diff = diff + mydiff;

if (diff <TOL) done = 1; .
if (pid==1) diff = 0; Assignment

for (i=mymin; i<=mymax; i++) A[i] = B[i];
! Core 1 Core 2

int main() { /* solve this using two cores */
initialize shared data A and B; B[1] | | B[2] || B[3] - - B[6]||B[7]]|]| B[8]

create threadl and call solve pp(1, 2);
create thread2 and call solve pp(2, 2);

A }

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Hit

A

Two caches of different block sizes

Tag

1021
1022
1023

4 20 10 Data
Index A

Index Valid Tag Data

T 20 ~t 32

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

One word/block

Byte
Hit 4/ offset
\ I [|
20 N
Tag N 8 Block offset
Index
Data (4 word)
Index Valid Tag <«
0
1
2
253
254
255
< 20
- L 2 /
<
| s
—I 32

Data

v

Four words/block

21

Data cache of single word block (block size is 4byte)

Core 1

Ta
Hit g

|20 4 10 Data

Index A

Index Valid Tag Data

0
1

A[O]

2

All]

Al2]

A[3]

Al4] @

1021

A[5]

122

A[6]

1023

Al7]

A[8]

A[9]

Af_a‘

N 20 d 32

One word/block

P CSC.T433 Advanced Computer Architecture, Department of C

A[O]

All]

A[2]

A[3]

Al4]

A[5]

A[O]

All]

A[2]

A[3]

Al4]

A[5]

A[O]

All]

A[2]

A[3]

Al4]

A[5]

Core 2

Al4]

A[5]

Al6]

Al7]

A[8]

A[9]

Al4]

A[5]

Al6]

Al7]

A[8]

A[9]

Al4]

A[5]

Al6]

Al7]

A[8]

A[9]

22

Data cache of four word block (block size is 16byte)

Core 1

Core 2

A

A[0], A[1], A[2], A[3]

Al4], A[3], A[6], A[7]

Al4], A[5], A[6], A[7]

A[8], A[9]

A[0], A[1], A[2], A[3]

Al4], A[5], A[6], A[7]

A[8], A[9]

A[O], A[1], A[2], A[3]

A[4], A[5], AL6], A[7]

A[4], A[5], A[6], A[7]

A[8], A[9]

i Df_a' One word/block

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

23

