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Pollack’s Rule

• Pollack's Rule states that microprocessor "performance 
increase due to microarchitecture advances is roughly 
proportional to the square root of the increase in 
complexity".  Complexity in this context means processor 
logic, i.e. its area.

WIKIPEDIA
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From multi-core era to many-core era

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36
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Distributed Memory Multi-Processor Architecture

• A PC cluster or parallel computers for higher performance

• Each memory module is associated with a processor

• Using explicit send and receive functions (message passing) to obtain the data 
required.

• Who will send and receive data? How?
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Shared Memory Multi-Processor Architecture

• All the processors can access the same address space of the main memory 
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for 
communication between the processors.

• What are the means to obtain the shared data?

• What are the advantages and disadvantages of shared memory?
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System

Chip

Shared memory many-core architecture

• Single chip integrates many cores (conventional processors) and an 
interconnection network.
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Intel Skylake-X, Core i9-7980XE, 2017
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The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
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Growth in clock rate of microprocessors

From CAQA 5th edition
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Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors
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Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section
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Sequential version as the baseline

• A sequential program main01.c and the execution result

• Computations in blue color are fully parallel

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

solve();

}

0.00  68.26 104.56 109.56 116.55 125.54  86.91  45.29   0.00   0.00 | diff=129.32

0.00  57.55  94.03 110.11 117.10 109.56  85.83  44.02  15.08   0.00 | diff= 55.76

0.00  50.48  87.15 106.97 112.14 104.06  79.72  48.26  19.68   0.00 | diff= 42.50

0.00  45.83  81.45 101.99 107.62  98.54  77.27  49.17  22.63   0.00 | diff= 31.68

0.00  42.38  76.35  96.92 102.61  94.38  74.92  49.64  23.91   0.00 | diff= 26.88

0.00  39.54  71.81  91.87  97.87  90.55  72.91  49.44  24.49   0.00 | diff= 23.80

0.00  37.08  67.67  87.10  93.34  87.02  70.89  48.90  24.62   0.00 | diff= 22.12

0.00  34.88  63.89  82.62  89.06  83.67  68.87  48.09  24.48   0.00 | diff= 21.06

0.00  32.89  60.40  78.44  85.03  80.45  66.81  47.10  24.17   0.00 | diff= 20.26

0.00  31.07  57.19  74.55  81.23  77.35  64.72  45.98  23.73   0.00 | diff= 19.47

0.00  29.39  54.21  70.92  77.63  74.36  62.62  44.77  23.21   0.00 | diff= 18.70

0.00  27.84  51.46  67.52  74.23  71.47  60.52  43.49  22.64   0.00 | diff= 17.95

0.00  26.41  48.89  64.34  71.00  68.67  58.43  42.17  22.02   0.00 | diff= 17.23

0.00  25.07  46.50  61.35  67.94  65.97  56.37  40.84  21.38   0.00 | diff= 16.53

0.00  23.83  44.26  58.54  65.02  63.36  54.34  39.49  20.72   0.00 | diff= 15.85

0.00  22.68  42.17  55.88  62.24  60.85  52.34  38.14  20.05   0.00 | diff= 15.20

0.00  21.59  40.20  53.38  59.60  58.42  50.39  36.81  19.38   0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x 

A[0] A[9]

i=4

+, +, x 

i=8
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Core 2

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[i]

• Assignment:  the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0;         /* variable  in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0;                    /* private variables */

int mymin = 1 + (pid * N/ncores);   /* private variable  */

int mymax = mymin + N/ncores – 1;   /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff <TOL) done = 1;

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;   

create thread1 and call solve_pp(1, 2);

create thread2 and call solve_pp(2, 2);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1

Computation
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Orchestration 

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0;                    /* private variables */

int mymin = 1 + (pid * N/ncores);   /* private variable  */

int mymax = mymin + N/ncores – 1;   /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

LOCK();

diff = diff + mydiff;

UNLOCK();

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

BARRIER();

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed 
atomically

After all cores update the diff,  
if statement  must be executed. 

if (diff <TOL) done = 1;
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization
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Flynn's taxonomy (1996)

• A classification of computer architectures, proposed by Michael J. 

Flynn in 1966. The four classifications are based upon the number of 

concurrent instruction streams and data streams available in the 

architecture.

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data stream)

• MISD (Multiple Instruction stream, Single Data stream)

• MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream

Data stream
SISD SIMD MISD MIMD



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Flynn's taxonomy (1996)

• A classification of computer architectures, proposed by Michael J. 

Flynn in 1966. The four classifications are based upon the number of 

concurrent instruction streams and data streams available in the 

architecture.

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data stream)
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Flynn's taxonomy (1996)

• A classification of computer architectures, proposed by Michael J. 

Flynn in 1966. The four classifications are based upon the number of 

concurrent instruction streams and data streams available in the 

architecture.

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data stream)

• MISD (Multiple Instruction stream, Single Data stream)

• MIMD (Multiple Instruction stream, Multiple Data stream)
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SIMD Variants

• Vector architectures

• SIMD extensions

• Graphics Processing Units (GPUs)

• SIMD variants exploit data-level parallelism

• Instruction-level parallelism in superscalar processors

• Thread-level parallelism in multicore processors
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Vector architecture

• Computers designed by Seymour Cray starting in the 1970s

• Basic idea:

• Read sets of data elements into “vector registers”

• Operate on those registers

• Disperse the results back into memory

Cray Supercomputer
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DAXPY in MIPS Instructions

Example:  DAXPY (double precision a x X + Y)

L.D F0,a ; load scalar a

DADDIU R4,Rx,#512 ; upper bound of what to load

Loop: L.D F2,0(Rx ) ; load X[i]

MUL.D F2,F2,F0 ; a x X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ; a x X[i] + Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx,Rx,#8 ; increment index to X

DADDIU Ry,Ry,#8 ; increment index to Y

SUBBU R20,R4,Rx ; compute bound

BNEZ R20,Loop ; check if done

• Requires almost 600 MIPS operations
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DAXPY in VMIPS (MIPS with Vector) Instructions

• ADDV.D :  add two vectors

• ADDVS.D :  add vector to a scalar

• LV/SV :  vector load and vector store from address

• Example:  DAXPY (double precision a*X+Y)

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDV.D V4,V2,V3 ; add

SV Ry,V4 ; store the result

• Requires 6 instructions


