Fiscal Year 2019

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

10. Instruction Level Parallelism: Out-of-order
Execution and Multithreading
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Exploiting Instruction Level parallelism (ILP) x
\

A superscalar processor has to handle some flows
efficiently to exploit ILP

* Register data flow
« Dynamic scheduling

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Instruction pipeline of OoO execution processor x
\

* Allocating instructions to instruction window is called dispatch
« Issue or fire wakes up instructions and their executions begin
« Incommit stage, the computed values are written back to ROB

« The last stage is called retire or graduate. The result is written back
to register file (architectural register file) using a logical register
number.

In-order front-end

Instruction | Instruction| Register |Register Read/
Fetch Decode | Renaming | Dispatch Out-of-order back-end

Execute/
Memory

Issue Commit

Retire

In-order retirement

~ ==
! 3

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Register dataflow

« In-flight instructions are ones processing in a processor

Cycle 8

\

@) @

Y@

Data flow graph
IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1t | _J[8][6][5] > [2]
(2201 | |__J[10][9][7] 1| »] | |
RoB| | Jo]o|8f7]6]5]4]3[2]1]
Front-end Back-end
- o~ g N —
Instructions to be executed for an application Instruction window 000 Core |Executed insns
| | | J16|15]|14]13]12|11]10]9 |8 |76 |54 |32t | | | |

Af_a'

Newer instructions

—

In-flight instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Case 1: Register dataflow from a far previous instn

* One source operand of insn I2 is from a retired instruction Ia. \

« Because Ia is retired long ago, the physical destination register has been freed.
The tag of the source register can not be renamed at the renaming stage for
I2, still having the logical register tag $3.

Ia: add $3,%0,%0
* Where does the operand $3 of I2 comes from? I1: sub pNZ
I2: add p10,p95%$3
I3: or pl1,%$4,%5
I4: and pl2,plo,pll
Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1| _J[8][6][5] > B
[12]] | [_J[10][9] 7] 1] »] |]
RoB| | [to]o|8f7|6]5]4]3][2]1]
Instructions to be executed Front-end Instruction window 000 Core Executed insns
L]] 1T | | lwe|s|14|13]12]11|10|9]8]7]6]|5[4]3|2]1]1b|1a] | |
Newer instructions B

S
In-flight instructions
Data dependence

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Case 1: Register dataflow from a far previous instn

* One source operand of insn I2 is from a retired instruction Ia. \

« Because Ia is retired long ago, the physical destination register has been freed.
The tag of the source register can not be renamed at the renaming stage for
I2, still having the logical register tag $3. Ta: add $3.40.90

* Where does the operand $3 of I2 comes from? I1: sub pNZ

I2: add p10,p93,$3

I3: or pl1,%$4,%5
I4: and pl2,plo,pll

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
Lul | L 8]lellsp—=> A L
[2]] | [Jlof[o][7z) | [» [L

roB[| Jwofo[s]7]e]5]4]3]2]1] RF

Instructions to be executed Front-end Instruction window 000 Core |Executed insns
L]] 1T | | lwe|s|14|13]12]11|10|9]8]7]6]|5[4]3|2]1]1b|1a] | |
Newer instructions i

S
In-flight instructions

ﬁj Data dependence
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Register renaming again

« A processor remembers a set of renamed logical registers. \

« If $1and $2 are not renamed for in-flight instructions, it uses $1 and $2
instead of pl and p2.
Register map table

Cycle 1 0 5
I1: sub $5,%$1,%2 — 1 1
I2: add $9,%5,%4 2 2
I3: or $5,%5,%2 3 3
I4: and $2,%9,%1 4 4
5 w 5'>9 » dst = p9
Free tag buffer |+ 6 | 6o > srcl = pl
e 5 = . src2 = p2
13112111110l 9 e o 2
9
Thead 10 I1: sub p9,%$1,%2
dst = $5
srcl = $1 —
31

ﬁ’ src2 = $2
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Case 2: Register dataflow

« Assume that one source operand pl10 of insn I5 is from I2 which is not retired. \
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

« Because I? is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add $3,30,$0
I1: sub p9,$1,$2
* Where does the operand of I5 comes from? Lo: odd gm%pg?ﬁ

I3: or pl\, $4,%5
I4: and pl2,840,pll
I5: nor pl3,pl0,pl2

Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(3] | L_I[8[12][11] B > [4] [|
(14| [][0 9][7] Le]| @[] [||
RoB|12| 11|10/ 9 [8[7]6]5[4f3]2] |
Instructions to be executed Front-end Instruction window | OoO Core Executed insns

[| | | l18]17]|1e]15]14|13]|12]11]10| 9876|543]2]1] | | |
Newer instructions)

=~

—

In-flight instructions

2 \E=20
~@ Data dependence
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Case 2: Register dataflow from ROB

« Assume that one source operand pl10 of insn I5 is from I2 which is not retired. \
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

« Because I? is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add $3,30,$0
I1: sub p9,$1,$2
* Where does the operand of I5 comes from? Lo: odd gm%pg?ﬁ

I3: or pl\, $4,%5
I4: and pl2,840,pll
I5: nor pl3,pl0,pl2

Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(]| L le][][u]—H »[4] [|
(14| [][0 9][7] Le]| @[] [||
rRoB|12|11]10]9 |8 [F|6]5[4f3]2] |
Instructions to be executed Front-end Instruction window | OoO Core Executed insns

[| | | l18]17]|1e]15]14|13]|12]11]10| 9876|543]2]1] | | |
Newer instructions)

=~

—

In-flight instructions

2 \E=20
~@ Data dependence
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Case 3: Register dataflow

« Assume that the other source operand pl12 of insn I5 is from I4 which is not

committed. The operand is generated in the previous clock cycle.

« Because I? is not retired, RF does not have the operand.

Cycle 9

Because I2 is not committed, ROB does not have the operand. 1a: add $3,%0,%0
I1: sub p9,%1,%2
« Where does the operand of I5 comes from? I2- add El@,p9,$3
I3: or pl11,%$4,%$5
I4: and pl12,pl0,pll
I5: nor pl13,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
3| L Jl8][t2][1] B >[4 ||
(4] |][]l 9][7] (el 1] [||
Roe[12[11[10] 98] 7] 6 5] 4[3]2] |
Instructions to be executed Front-end Instruction window 000 Core Executed insns

Af_a'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

1] |] |

6|5]4[3]2

S
In-flight instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data dependence

\

10

Case 3: Register dataflow from ALUs

« Assume that the other source operand pl12 of insn I5 is from I4 which is not

committed. The operand is generated in the previous clock cycle.

« Because I? is not retired, RF does not have the operand.

Cycle 9

Because I2 is not committed, ROB does not have the operand. 1a: add $3,%0,%0
I1: sub p9,%1,%2
« Where does the operand of I5 comes from? I2- add El@,p9,$3
I3: or pl11,%$4,%$5
I4: and pl12,pl0,pll
I5: nor pl13,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
(3| L Jle]lt2][n] | | »l4] ||
(4] |][]l 9][7] [e]) pIC1] [||
Roe[12]11[10] 9 [8] 7 6] 5] 4 [3|[2] |
Instructions to be executed Front-end Instruction window 000 Core Executed insns

Af_a'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

1] |] |

6|5]4[3]2

S
In-flight instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data dependence

\

11

Reorder buffer (ROB), content addressable memory

« Each ROB entry has following fields
entry valid bit, data valid bit, data, target register number, etc.
« ROB provides the large physical registers for renaming

physical register number is ROB entry number

\

* The value of a physical register may be data within a matching ROB entry

Cycle 8

Entry Data
Index valid Valid 32-bit Data target reg number
0
head —— 1 1 1 Computed data of I1 +—$3 - 3
2 1 e - $4 | &F
1 1 Computed data of I3 $5 Retire
tail ——> 11 1 0 $10
49
I11: add pl1,p3,p8 (add $10,%$5,%6)
IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1] | [J[8][6][5] > [2]
[12]) | [J[10][9][7] (1| »[] [|
RoB| | [10[9]8]7]6[5[4[3]2]1]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Reservation station (RS)

« To simplify the wakeup and select logic at issue stage, each functional x
unit (ALU) has own instruction window, an entry for an instruction is
called reservation station (RS).

« Each reservation station has

 valid bit, srcl tag, srcl data, srcl ready, src2 tag, src2 data, src2 ready,
destination physical register number (dst), operation, ...

« The computed data with its dst as tag is broadcasted to all RSs.

instruction window for ALU1 and ALU2 IW for ALUl IW for ALU1
L] N
ISsue ‘1' v ISsue v & Reservation station
ALU1 ALU2
(a) Central instruction window (b) instruction window using RS
valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation

@’ For operand srcl For operand src2
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Datapath of OoO execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

FP ALU

ALU I ALU l Branchl
‘T

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥ —
LIt LIt iityd LI i] [L11T]] LI TTT] [ITTTT1]|Instructionwindow
v v v v

|||||||||||||¢||||||"|
Reorder buffer (ROB)
= Register dataflow

A

A
L]

y
L [T 1]

Store

v v
Adr gen. I Adr gen. I
A 4

A 4

queue

\ 4

Data cache |

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 14

Instruction fetch unit in IF stage

* For high-bandwidth instruction delivery, prediction, and speculation

If stage

Next PC generator

\

Id stage

Branch Target PC
for recovery

Target address v

A

lPC' BHR

Taken/
Untaken

Branch predictor

Instruction cache

Pipeline registers

\ 4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

»
»

15

Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

Cycle 1 Register map table
I0: sub $5,%1,%2 0 0
I1: add $9,%$5,%4 > 1 1
I2: or $5,%$5,%2 > >
I3: and $2,%9,%1 3 3 | e » A dst = p9
Free tag buffer "4 | At : 2 zﬁz ; : E ;
.. *E e 5-0 =
13(/12(11110! 9 - 6 6
MT ... Ve 7 » B dst = plo
nead |-l | o g G B_srcl = p9
I0 Adst =9$5 | | | | 5K 2510 B_src2 = p4
A srcl = $1 10 If B_srcl==A_dst, use tag from free tag buffer
A src2 = $2
I0: sub p9,pl,p2
T1 B_dst = $9 I1: add pleo,p9,ps
B srcl = $5
= $4 — 31

ﬁw B src2
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Datapath of OoO execution processor (partially)

\

Instruction flow

Instruction cache

* A 4

Branch handler It Instruction fetch I
Instruction decode I

Renaming

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 17

Aside: What is a window?

« A window is a space in the wall of a building or in the side of a vehicle,

A

which has glass in it so that light can come in and you can see out. (Collins)

(c)

Instruction window

Instructions to be executed for an application

Instruction window
| J[8][6][5]
L L el 7]

Large instruction window

Instruction window

Instruction window

|
K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

18

Datapath of 00O execution processor (partially)

Instruction cache

—_—

Branch handler It

A

y

Instruction flow

Instruction fetch I

Instruction decode

Renaming

Instruction decode |
__Feraning__|

» Register file > Dispatch
Integer Floating-point Memory
[| | | | |
(TTT] [TTIT] [TLT0] [TTI0 (TTT1T1 [IT1T] | Instructionwindow
[(TTTT T T I I I I T ITTTTT]
Reorder buffer (ROB)
= Register dataflow

Reservation station (RS)

\

19

Datapath of 00O execution processor (partially)

Instruction cache

—_—

A

y

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

T T Instruction window

Renaming
» Register file > Dispatch
Integer Floating-point |
RS [I I I |] <
v v v v v
R (TT1 1]
v v v v
ALU I ALU I Branch I FP ALU
T
(T I I I I IITITITITIT]
v
Reorder buffer (ROB)
= Register dataflow

Reservation station (RS)

\

20

Instruction Level Parallelism (ILP)

\
lw $t0, 32($s3) (1) <:i:>
dd $t;\\;\£\\§%@ (2)
a , $s2,
| (@
SW $t0, 48(%$s3) (3)
9 / data
' dependency
1w $t1, 32(%$s4) (4) <:::>
"/
ambiguous
data dependency

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Memory dataflow and branches

\

« The update of a data cache cannot be recovered easily. So, cache‘%%
update is done at the retire stage in-order manner by using store
queue.

Because of the ambiguous memory dependency, load and store
instructions can be executed in-order manner.

« About 30% (or less) of executed instructions are load and
stores.

» Even if they are executed in-order, IPC of 3 can be achieved.
* Branch instructions are executed in-order manner.

« About 20% (or less) of executed instructions are jump and
branch instructions.

« Out-or-order branch execution and aggressive miss recovery
may cause false recovery (recovery by a branch on the false
control path).

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Datapath of OoO execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

FP ALU

ALU I ALU l Branchl
‘T

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥ —
LIt LIt iityd LI i] [L11T]] LI TTT] [ITTTT1]|Instructionwindow
v v v v

|||||||||||||¢||||||"|
Reorder buffer (ROB)
= Register dataflow

A

A
L]

y
L [T 1]

Store

v v
Adr gen. I Adr gen. I
A 4

A 4

queue

\ 4

Data cache |

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 23

Pollack's Rule

\

* Pollack’s Rule states that microprocessor "performance 2%
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

? WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

From multi-core era to many-core era

S

Many-core Era
Massively parallel
applications
] 1004
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[l 1 [l 1 [l [l [l 1 [l 1 [l
1 | 1 1 1 1 1 1 1 1 1
2003 2005 2007 2009 201 2013

Figura 1: Currant and expacted eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Multithreading (1/2)
\

« During a branch miss recovery and access to the main memory by a cache miss,
ALUs have no jobs to do and have to be idle.

« Executing multiple independent threads (programs) will mitigate the overhead.

« They are called coarse- and fine-grained multithreaded processors having
multiple architecture states.

Thread 1 S context switch code Thread 2

e CRENGHHR TR
= i
mres JUHRRCERNGEN=RERI

@@;SC.T{B Advanced Computer Architecture, Department of Computer Science, TOKYO TECH hitp://www.realworldfech.com/alpha-ev8-smt/ 26

Multithreading (2/2)

« Simultaneous Multithreading (SMT) can improve hardware resource

usage.
Thread 1 OF context switch code Thread 2
MO M FLEEEEE:
Processor
Imterm pt, exception, or O6 a]l mh:mf'memcepan
Thread 1 Thread 2 Thread 3 Thread 1
B)
Coarse-grained
Multithreaded
(Cache muss Cache nass T Cache nass ?
)
Fine-grained
(FMT)
D)
Simultaneous
Multithreaded
(SMT)
Execution T
Units Time

ﬁ Figure 1. Multithreaded Execution with Increasing Levels of TLP Hardware Support
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH http://www.realworldtech.com/alpha-ev8-smt/ 27

