Fiscal Year 2019

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

9. Instruction Level Parallelism: Exploiting ILP
Using Multiple Issue and Speculation
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Hardware register renaming
\

* Logical registers (architectural registers) which are ones defined by
ISA

- $0, %1, .. $31
 Physical registers
« Assuming plenty of registers are available, pO, p1, p2, ...

* A processor renames (converts) each logical register to a unique
physical register dynamically

Typical instruction pipeline of scalar processor

IF ID EX MEM WB

Typical instruction pipeline of high-performance superscalar processor

IF ID Renaming | Dispatch Issue | Execute | Commit Retire

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Out-of-order execution X
\

 Inin-order execution model, all instructions are

executed in the order that they appear. @
This can lead to unnecessary stalls.
* Instruction (3) stalls waiting for insn (2) to go
first, even though it does not have a data @ @

dependence.

 Using register renaming to eliminate output
dependence and antidependence, just having Data flow graph
true data dependence

 With out-of-order execution, insn (3) is allowed
to be executed before the insn (2)

« Scoreboarding (CDC6600 in 1964)

« Tomasulo algorithm (IBM System/360 Model 91

~<§@' in 1967)

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

The key idea for OoO execution (1/3)

« In-order front-end, OoO execution core, in-order retirement using instruction \
window and reorder buffer (ROB)

Cycle 1 IF ID Renaming
1

I1: sub p9,pl,p2
2 In-order front-end I2: add p1o@,p9,p3

I3: or pll,p4,p5
I4: and pl2,plo,pll

4 2 @
Cycle 3 IF ID Renaming

Cycle 2 IF ID Renaming

D9
5 3 1
S (@)
plo
Cycle 4 IF ID Renaming Instruction window pll
allG| E 1 (@)
8 6 4 2 Data flow graph
Cycle 5 IF ID Renaming Instruction window
9 7 5 311

. =D 10 8 6 4 2
4 4

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

The key idea for OoO execution (2/3)

* In-order front-end, OoO execution core, in-order retirement using instruction \
window and reorder buffer (ROB)

Cycle 5 IF ID Renaming Instruction window I1: sub p9,pl,p2
2 ! > 31U I2: add pl10,p9,p3
10 8 6 4112 I3: or pll,p4,p5
I4: and pl2,plo,pll
Cycle 6 IF ID Renaming Instruction window Issue
11 9 7 6|5 1 @
12 10 8 4 || 2 3 9
We assume that I1 and I3 can be issued at cycle 6 by dependence.
Cycle 7 IF ID Renaming Instruction window | Issue | Execute @
13 11 9 8l 6|5 2 > 1) p10
14 12 10 47 D [3
Data flow graph
Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit
15 13 1 8 |[6][5 4]l »[2 1
16 14 12 10][9][7 > 3

~ "\ ="
) 5

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

The key idea for OoO execution (3/3)

* In-order front-end, OoO execution core, in-order retirement using instruction

window and reorder buffer (ROB)

Cycle 6

=)

IF ID Renaming Instruction window Issue
11 9 7 6|5 1
12 1 4 112

0 8 3 Head of the FIFO
ROB 6|5/4]3[2]1]

IF ID Renaming Instruction window | Issue | Execute
13 1 9 8 |[6][5 2] » 1
14 12 10 4][7 > [3

ROB 8]7]6|5[4]3][2]1]

IF ID Renaming Instruction window | Issue | Execute | Commit Retire
15 13 11 8|l 6][5 4] »[2 1 1
16 14 12 0][9][7 > 3

ROB 10{9(8|7|6|5[4|3|2]1 RF

IF ID Renaming Instruction window | Issue | Execute | Commit Retire
17 15 13 8 |[12] 1 5] »[4 2 2
18 16 14 10][9][7 6]l P 3

ROB[12|11({10[{9 |8 |7 |6 |5 |43 |2 RF

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

6

Architectural register file

Instruction pipeline of OoO execution processor

 Allocating instructions to instruction window is called dispatch

\

« Issue or fire wakes up instructions and their executions begin
* Incommit stage, the computed values are written back to ROB

* The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

In-order front-end

Instruction
Fetch

Instruction
Decode

Register
Renaming

Register Read/
Dispatch

=)

49‘

Out-of-order back-end (execution)

Execute/

Memory Commit

Issue

Retire

In-order retirement

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Exercise: Qo0 execution

* Draw the cycle by cycle processing behavior of these 12
instructions

* wakeup
« select

@30/0 i

g} (9 —(10——12~

\

Cycle 1

Cycle 6

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 2

|ROB

Cycle 7

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 3

|ROB

Cycle 8

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

[
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

UL

|ROB

Cycle 4

|ROB

Cycle 9

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

UL

|ROB

Cycle 5

|ROB

Cycle 10

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

[]
[]
[|

|ROB

=S

|ROB

Prediction miss and recovery

* Assume that instruction 3 is a miss predicted branch and its target insn is 20
 When insn 3 is retired, it recovers by flushing all instructions and restart
« Register file (and PC) has the architecture state after insn 3 is executed

Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
17 15 13 8 |[12][11 5] »[4 2 2
18 16 14 0][9][7 6] » [3]
ROB|12|11|10|9 |8 |7 |6 |5 3|2 RF
Cycle 10 IF ID Renaming Instruction window Issue | Execute | Commit Retire
ROB RF
Recovery by flushing instructions on the wrong path (may takes several cycles)
Cycle 11 IF ID Renaming Instruction window Issue | Execute | Commit Retire
20 >
21 >
ROB RF

=)

A@‘

Restart by fetching instructions using the correct PC

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

MIPS R3000 Instruction Set Architecture (ISA)

e Instruction Categories

=)

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

. Registers

Computational

Load/Store RO - R31

Jump and Branch

Floating Point

e coprocessor =

Memory Management w7

Special Lo

3 Instruction Formats: all 32 bits wide

OP rs rt rd shamt | funct R format
OP Is rt Immediate | format
OP jump target (immediate) J format

11

Branch prediction miss and aggressive recovery

« Instruction 3 is a miss predicted branch and its target insn is 20
 When insn 3 is executed, it recovers by flushing instructions after insn 3 and restarts

Cycle 7 IF ID Renaming Instruction window Issue | Execute
13 11 9 8| 6]l5 2] » 1
14 12 10 47 > B
ROB 8l7]6|5[4]3][2]1]
Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire

3 [2 1 1

> 3
ROB 3|21 RF

Recovery by flushing instructions on the wrong path (may takes several cycles)

Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire

20 > 2 2
21 > 3

ROB 312 RF
Restart by fetching instructions using the correct PC

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Aside: What is a window?

« A window is a space in the wall of a building or in the side of a vehicle,

\

which has glass in it so that light can come in and you can see out. (Collins)

(a)

(b)

(c)

™

A@‘

Instruction window

Instruction window

8

6

5

4

7

Instructions to be executed for an application

Large insfruction window

Instruction window

Instruction window

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

