Fiscal Year 2019

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

8. Instruction Level Parallelism: Dynamic
Scheduling

f
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Scalar and Superscalar processors
\

« Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

« TIPC (Executed Instructions Per Cycle) can be more than 1.
 using n pipelines is called n-way superscalar

Time (in clock cycles)

200 400 600 800 1000 1200 1400
. y , . ¢ : b . cC 1 cCC2 €C3 CC4 CC5 CCB CCH1 cc2 cec3
Instruetion | Instructio
Instruction Data fetch decode
Re ALU Re
fetch ¢ access © n Instruction | Instructio
P E— X fetch decode
Instruction Data -
200 ps fetch Reg ALU access Reg Instruction | Instruction Write back
fetch decods
m Instruction Rec| ALU Data Reg p—— p—
nstruction | Instruction)
P fetch access tetch decode Write back

Instruction

200ps 200ps 200 ps 200 ps 200 ps fuc
Instruction | Instruction
fetch

Instruction
fetch

Write back

Instruction
fetch

Write back

(a) pipeline diagram of scalar processor
(b) pipeline diagram of 2-way superscalar processor

™

A@‘
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Instruction fetch unit in IF stage

* For high-bandwidth instruction delivery, prediction, and speculation

If stage

Next PC generator

\

Id stage

Branch Target PC
for recovery

Target address lP C.BHR

Taken/
Untaken

PC

Branch predictor

BTB Instruction cache

Pipeline registers

A
\ 4

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

>

Exploiting Instruction Level parallelism (ILP) X
\

A superscalar processor has to handle some flows
efficiently to exploit ILP
« Control flow

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

* The main obstacles are branch instruction (BNE, BEQ)
 Another obstacle is instruction cache

* Register data flow
* Dynamic scheduling

« Memory data flow

~ "\ ="
S 4

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exploiting Instruction Level Parallelism (ILP)

What is the solution?

4 cycles for 4 insns

Prediction & speculation ILP=1.0
Control

B1 m dependence

BE[f\
Error check

Instruction

Data dependence

*C *C+ (*A *B) vy
alse Tr'ue (3)
r'e‘rur'n \

Data flow graph

Control flow graph

;\9‘

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

3 cycles for 4 insns
ILP =133

Data flow graph

Exercise: what is data dependence

A
* Draw a data flow graph for each instruction stream 3%

R3 = R2 + 1 (1)
R5 = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 1

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R3 + 3 (3)

Instruction stream 2

R3 =R2 +1 (1)
R3 =R4 + 2 (2)
R7 = R6 + 3 (3)
Instruction stream 3

R3 =R2 +1 (1)
R5 = R4 + 2 (2)
R4 = R6 + 3 (3)
Instruction stream 4

True data dependence

« Insniwrites aregister that insn j reads, RAW (read after write)
Program order must be preserved to ensure insn j receives the value of

™

Insn 1.
R3 = R3 X R5 (1)
R4 = R3 + 1 (2)

(R3)= R5 + 2 (3)
R7 =(R3)+ R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1) 20_ =
21 = 20 + 1 (2) 21 =2

=3 + 2 (3) 41 =
26 =(5)+ 21 (4) 5 =

A@‘

\

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

X
+

+
+

2
1
21
2

Assume R3=10, R5=3

(1)
(2)
(4)
(3)

\

Output dependence

3
e Insniand jwrite the same register, WAW (write after write) X

* Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

(R3)= R3 x R5 (1)

R4 = R3 + 1 (2)

(R3)= R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3 Assume R3=10, R5=3

(20)= 10 x 2 (1) (5)=13 +2 (3)
21 = 20 + 1 (2) (20)= 10 x 2 (1)
(G)H=3 +2 (3) 21 = 20 + 1 (2)
26 =5 + 21 (4) 41 = 20 + 21 (4)

=
SN 8

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Antidependence

3
* Insnireads aregister that insn j writes, WAR (write after read) X
* Program order must be preserved to ensure that i reads the correct

value.
R3 = R3 X R5 (1)
R4 + 1 (2)
(R3)= R5 + 2 (3)
R7 = R3 + R4 (4)
Assume R3=10, R5=3 Assume R3=10, R5=3
20 = 10 X 2 (1) 20 = 10 x 2 (1)

21 =‘+ 1 (2) (5)=3 +2 (3)
(5)=3 +2 (3) 6 =G)+ 1 (2)

26 =5 + 21 (4) 11 =5 + 6 (4)

==
! 9

® (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data dependence and renaming
\

e True data dependence (RAW)

R3 = R3 x R5 (1)

* Name dependences RA = R3 + 1 (2)
« Output dependence (WAW) R8 = R5 + 2 (3)

« Antidependence (WAR) + R4 (4)

R3 = R3 x RS (1) RAW
R4 = R3 + 1 (2)

R3 = R5 + 2 (3) RAW @ @
R7 = R3 + R4 (4)

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Hardware register renaming
\

* Logical registers (architectural registers) which are ones defined by
ISA

- $0, %1, .. $31
 Physical registers
« Assuming plenty of registers are available, pO, p1, p2, ...

* A processor renames (converts) each logical register to a unique
physical register dynamically

Typical instruction pipeline of scalar processor

IF ID EX MEM WB

Typical instruction pipeline of high-performance superscalar processor

IF ID Renaming | Dispatch Issue | Execute | Commit Retire

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Exercise: register renaming

« Rename the following instruction stream using physical registers
of p9, pl10, pll, and p12

10:
I11:
12:
I13:

sub $5,%1,%2
add $9,%5,%4
or $5,%$5,%2
and $2,%9,%1

\

12

=)

Renaming the first instruction IO

Cycle 1

I0: sub $5,$1,$2
I1: add $9,%5,%4
I2: or $5,$5,$2
I3: and $2,9%9,%1

Free tag buffer

13|12(11(10| 9 (==
Thead
srcl = $1 —
src2 = $2

49|

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Register map table

Example behavior of register renaming (1/4) X
\

° 0
o :

> 3

* 4

5. y 5->9
""""""""" 6 | 6.
................. =

8 8

9

10

31

...................... » dst — p9
.......... - o pl
» src2 = p2

I0: sub p9,pl,p2

13

=)

Renaming the second instruction Il

Cycle 2

I0: sub $5,%1,%2
I1: add $9,%5,%4
I2: or $5,%5,%2
I3: and $2,%9,%1

Free tag buffer

dst
srcl
src2

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

13{12|11|10 il

Register map table

° 0
! 1
2 2
> 3
— 4 2
> 5 9
6 | 6.
_______________________________________ -
sy | s | 8
........................ -
10
$9
$5
$4
31

Example behavior of register renaming (2/4) X
\

...................... » dst = plo
.......... srcl = po
> src2 = p4

I0: sub p9,pl,p2
I1: add pl10,p9,ps

14

™

Renaming instruction

Cycle 3

I0: sub $5,%1,%2
I1: add $9,%$5,%4
I2: or $5,%5,%2
I3: and $2,%9,%1

Free tag buffer

1

head

dst
srcl
src2

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

13(12[11 i

I2

Register map table

9 0
1 1
3 3
4 4
g 5 y O->11
........................... e
P - :
et e 8 8
3 10
10
$5
$5 |
$2
31

Example behavior of register renaming (3/4) X
\

...................... y dst = pll
.......... srcl = po
> src2 = p2

I0: sub p9,pl,p2
I1: add pl1o,p9,ps
12: or pll,p9,p2

15

Example behavior of register renaming (4/4)

e Renaming instruction I3

Cycle 4

10:
I11:
I12:
I13:

sub $5,%$1,%2
add $9,%5,%4
$5,$5,%2
and $2,%9, %1

or

Free tag buffer

™

49‘

13/12
Thead
dst
srcl
src2

ROl

$1

Register map table

nmn nu
A
O

° %]
— 1 7
2 Y 2->12
,3“ 5
. 2
5 11
6 | 6.
................. 7 =
8 3
> 9 -
10
31

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

I1:
I12:
I13:

\

» dst = p12
—» srcl = plo
> src2 = pl

: sub p9,pl,p2

add pl1o,p9,ps
or pll,p9,p2
and pl2,plo,pl

16

Renaming two instructions per cycle for superscalar

e Renaming instruction I0 and I1

Cycle

10:

1

I1:
12:
I13:

sub $5,%1,%2
add $9,%5,%4
or $5,%5,%2
and $2,9%9, %1

Free tag buffer

\

Register map table

13(12{11|10| 9

™

49‘

dst =
srcl =
src2 =

dst
srcl
src2

0 %)
3 3 » dSt = p9
> 4 PR A srcl = pl
.................. P-5|> 5_>9 > Sr\cz - pz
R VRN 6 6
| i R S Et E———— » dst = pile
............................ 8 8 » srcl = p5
................ G =310 > src2 = p4
10
I10: sub p9,pl,p2
I1: add p10,p5,p4 (Wrong)
31

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Renaming two instructions per cycle for superscalar

e Renaming instruction I0 and I1

Cycle

10:

1

I1:
12:
I13:

sub $5,%1,%2
add $9,%5,%4
or $5,%5,%2
and $2,9%9, %1

Free tag buffer

Register map table

13(12{11|10| 9 ==

=)

49‘

I0 A dst =
A srcl =
A src2 =

T1 B_dst =
B srcl =
B src2

9 (%]
— 1 1
3 3 e » A dst = p9
"4 4 T, Q—SPC; = p;
................. > Src =
b 550 P
6 6
..................... 7 7 BN B dst — pl@
............... o P e —— B_srcl = p9
“§F 2510 B_src2 = p4
If B_srcl==A_dst, use tag from free tag buffer
10
I0: sub p9,pl,p2
I1: add plo,p9,ps
31

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

18

Pollack's Rule

\

* Pollack's Rule states that microprocessor "performance 3%
increase due to microarchitecture advances is roughly
proportional o the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

i 39' WIKIPEDIA

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

