Fiscal Year 2019

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

6. Instruction Level Parallelism: Instruction Fetch

and Branch Prediction
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Scalar and Superscalar processors

« Scalar processor can execute at most one single instruction per clock \
cycle using one ALU.
« TIPC (Executed Instructions Per Cycle) is less than 1.

« Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

« TIPC (Executed Instructions Per Cycle) can be more than 1.
 using n pipelines is called n-way superscalar

1400 Time (in clock cycles)

200 400 600 800 1000 1200
> CC1 cC2 CC3 CC4 CC5 CCB CC1 ccz CC3

T T T T T T T

Instructio .
Write back
i fetch
Instruction Reg ALU Data Reg n
fetch | |) " | access Instructio
* ™ Instruction Data feten
200 ps| fetch Reg access |Fe9 nsiru
eco
- * Instruction Data
200 ps| feten Reg IEEEEIN access Reg neinu
eco
nstruc

a2
oo
3

200ps 200ps 200 ps 200 ps 200 ps

o EH EH

Write back

Write back

_|
o

= =

g7|g
3’2»_ I = n%_
o o llaa
3

(a) pipeline diagram of scalar processor
) jgp‘ (b) pipeline diagram of 2-way superscalar processor

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A four stage pipelined 2-way superscalar processor supporting ADD
which does not adopt data forwarding (procl0, Assignment 5)

If stage Id stage Ex stage Wb stage
IfId IdEx ExWb
Id_RD1 IdEx_RD1 ExWb_RD1
3 Id_IR1(IfId_IRS[31:0[]) Id RS1 Id_RRS1. IdEx_RRS1 o
F:
pc - ExWb_RSLT1
H o PRy
=
Id_RT1 Id_RRT1
& d_ L IdEx_RRT1
If_IRS|| & .)
—pC imem in Pipelinel
. . _S
Pipeline2 &
_h
Id_RS2| = Id_RRS2 IdEX_RRS2 -
[} |
a
. o ExiWb_RSLT2
Id_RT2 Id_RRT2 IdEx_RRT2
Id_IR2(IfId_IRS[63:32]])
—> using negedge CLK
to update
Id_RD2 IdEx_RD2 ExWb_RD2

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Waveform of ProclO

Signals
Time
RST_x_
pCcl3l:e]=

It_IRS[63:0
1fId_IRS[63:0
Id_IR1[31:@
Id_1R2[31:0
Id Rs1[4:0
Id_RT1[4:0
Id_RD1[4:0
Id Rs2[4:0
Id_RT2[4:0
Id_RD2[4:0
Id RR51[31:0
Id_RRT1[31:0
Id RRS52[31:0
Id RRT2[31:0
IdEx _RD1[4:8
Idex RD2[4:@
IdEx RRT2[31:0
IdEx_RRT1[31:0
IdEx _RRS1[31:0
IdEx_RR52[31:0
Ex_RSLT1[31:0
Ex_R5LT2[31:0
ExWb RD1[4:0
Exwb RD2[4:8
Exwb RSLT1[21:0
ExWb RSLT2[31:6

Waves

peegeaRe

188

Wx+ 000088 280088002
BEE0eE088E0080BE0R

¥+ 00000008
x+ | Be0eeses
e
f1]
E1]
Be
f1]
E1]
geegeeee
geegeoae
peegeaEae
geegeeee
e
[a
peegeaRe
geegeae8e
(e[=]e]e] e e]=]]
peggeoee
¥+ 00080888
¥+ 00080088
£]]
aa
peegeERe
gegoeoee

ns 2080 ns

EEEEEEER
BE42102000210640
POEEPAZ000000AZ0
CEEEEERD
CELEEEERD

Baeeee1e
BE542020006315:
BE421020008210528
gezles2e
08421028
B1
81
81
B2
B2
B2
BEEReE16
peeoeale
BEBgeBe21
BEeeee21

NOP
NOP
$1
$2
$3 =
$4 =

$0,
$0,
$1,
$2,
$3,
$4,

$0
$0
$1
$2
$3
$4

0x16
ox21
Ox2c
Ox37

0x16
ox21
Ox2c
ox37

add

+
+
+
add +

I
N
N

-

r[l]= r[2]=33, r[3]=44, and r[4]=55

|

588 ns

EEEEE]
p
DB5420200063
0631820
0842020
83
83
83
84
o4
L]
8088802C
8088802C
80888637
80008037
81
B2
8008021
88098016
80000016
8008021
8880082C
00000042

B3

B4

BREERa3T

Beeaeezc

Beeeee2Cc

BoeERe3T
gee88a58
0E00EREE

a8l

B2

BeEERR2C

poooBo4z

608 ns 708 ns

BEEREE2E Baee

B3
04
9000885
D0OEBBGE

Exploiting Instruction Level parallelism (ILP) X
\

A superscalar processor has to handle some flows
efficiently to exploit ILP
« Control flow

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

* The main obstacles are branch instruction (BNE, BEQ)
e Another obstacle is instruction cache

* Register data flow
« Memory data flow

~ "\ ="
) 5

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Branch predictor x
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

« Let's guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

~ "\ ="
) 6

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sample program: vector add

##tdefine VSIZE 4

void vadd(long *A, long *B, long *C){

for(i=0; i<VSIZE; i++)

C[i] += (A[i] + B[i]);

Executed instruction sequence

B3 —

B3 —»

31{ =0]

v

BZ/

o

*C=*C+ (*A +*B)

++
A++
B++

C++
i<4

/

False

True

B3 { return]

B3} —»

Control flow graph

e

/ Not Taken (0) / Not Taken (O)/Nof Taken (O)/‘Taken (1)

B1

B2

B2

B2

B2

B3

\

Taken (1)

Taken (1)

Taken (1)

;‘@‘
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Not Taken (0)

Simple branch predictor: Branch Always x
\

* How to predict
* It always predictsas 1.
* How to update
* Nothing cause it does not use any memory.

~ "\ ="
) 8

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simple branch predictor: 2bit counter

» Tt uses two bit register or a counter.

* Hot to predict

e Tt predicts as 1if the MSB of the register is one, otherwise predicts as O.

* How to update the register

e If the branch outcome is taken and the value is not 3, then increment the

register.

« TIf the branch outcome is untaken and the value is not O, then decrement

the register.

2 bit
—

l

Prediction

=)

\

Taken
Taken
Strongly N\NT__ Weakly
Taken (11) Untaken Taken (10)

s

~
Taken -~ Untaken

-

“ o7 ken
Weakly et Strongly
Untaken (01) / = = = *» _Untaken (00 \
Untaken S

~ -
Untaken

49‘
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sample program: vector add with two branches

31[=0 }

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {

¥
¥

Executed instruction sequence

;‘@‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

if(A[i]<@) error_routine();

C[i] += (A[i] + B[i]);

BE { }
Error check

v
BZ[}
*C:*C+(*A+*B)

83[

False

return }

Control flow graph

True

/fes — /fes — /fes — /fez
B1 BE| |B2 BE| |B2 BE| |B2 BE| |B2 B3
o 1 o 1 o 1 0 0

\

10

Simple branch predictor: bimodal

* Program has many branch instructions. The behavior may depend on

each branch. Use one counter for one branch instruction

* How to predict

» Select one counter using PC, then it predicts 1 if the MSB of the

register is one, otherwise predicts O.

* How to update

« Select one counter using PC, then update the counter same manner

as 2bit counter.

Pattern History Table (PHT)

Program
Counter

2" entry

Prediction

—>

I
G 2 bit

A@‘

~N
A 4

Taken
STroneg
Taken (11)

Taken

»”
Weakly —
Untaken (01 Urita ;

Taken

Un‘raken

-
-

Taken

Weakly
Taken (10)

Un‘raken

Strongly
Untaken (00

<

Untaken ~

/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

11

Prediction accuracy of simple branch predictors

« The accuracy of branch always is about 50%. \
« The accuracy of bimodal predictor of 4KB memory is about 88%.
100
%0 8KB hardware budget O Branch Always
O 2bit counter
80 o M Bimodal
2 70 | - T
> _)
5 60 |
o
2 50 | T F 1
RS
46 | —
2 40 : — i
GLJ - -
g 30 niEEe
2
20
o 1l M lala
0 L || || || || L || || L L || _L_L_ _L_]\ |
TYe Y Py yYy R eI IYR o
Lt bt EEEEEEEES 20 o
w unu unun un un <

=)

. 49' Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Sample program: vector add with two branches

31[=0 }

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {

¥
¥

Executed instruction sequence

;‘@‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

if(A[i]<@) error_routine();

C[i] += (A[i] + B[i]);

BE { }
Error check

v
BZ[}
*C:*C+(*A+*B)

83[

False

return }

Control flow graph

True

/fes — /fes — /fes — /fez
B1 BE| |B2 BE| |B2 BE| |B2 BE| |B2 B3
o 1 o 1 o 1 0 0

\

13

Simple branch predictor: bimodal

* Program has many branch instructions. The behavior may depend on
each branch. Use one counter for one branch instruction

* How to predict

» Select one counter using PC, then it predicts 1 if the MSB of the
register is one, otherwise predicts O.

* How to update

« Select one counter using PC, then update the counter in the same
way as 2bit counter.

Pattern History Table (PHT) Vielget Taken
Program o ont STr'ongly Weakly
Counter entry Taken (11) Un‘raken Taken (10)
Taken g UnTaken
n Prediction e
y R Taken
7 > — Weakly 4— Strongly
Untaken (01) / — = = Untaken (00
Unta k > ,
;,—/ . [4
o 2 bit Untaken

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

An innovation in branch predictors in 1993 X
\

 Using branch history
 global branch history
* local branch history

» 2-level branch predictor and Gshare

» Assume predicting the sequence 1110 1110 1110 1110 1110 ...

11101110 ?
111011101 ?
1119111011 »
11191110111 ?
111911101110 ?

~ ="
@\ 15

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Recommended Reading
\

e Combining Branch Predictors
e Scott McFarling, Digital Western Research Laboratory
« WRL Technical Note TN-36, 1993

* A quote:
“In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given

counter array size."

=)

~ ="
\Q\ 16

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Gshare (TR-DEC 1993)
* How to predict x

« Using the exclusive OR of the global branch history and PC to access PHT,
then MSB of the selected counter is the prediction.

* How to update
« Shifting BHR one bit left and update LSB by branch outcome in IF stage.
e Update the used counter in the same way as 2BC in WB stage.

Program 1110111011 (shift register)

Counter
\ /Br'anch History
Register (BHR)
n m Taken
4 4 Pattern History Table (PHT) Taken
l l on entry STf'Ol’lgly e — Weqkly
XOR (P Taken (11) Untaken Taken (10)
Taken e -
-’ Untaken
n ' Prediction g
/ > Taken
7 > —> Weakly — Strongly
Untaken (01) TJ T k_ > Untaken (00) \
A= \) nraken V\ _ /
~@ 2 bit Untaken
J 17

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exercise: how to update PHT and BHR of Gshare

\

18

Bi-Mode (MICRO 1997)
\

* A choice predictor (bimodal) is used as a meta-predictor

* How to predict
e Like Gshare, both of Taken PHT and Untaken PHT make two
predictions.
« Select one among them by the choice predictor which tracks the
global bias of a branch.

e How to upda-re BHR | Program ClounTer
e The used PHT is updated
in the same way as 2BC. 14 ‘
XORP g]

« Choice predictor is update
in the same way as bimodal

Choice predigtor

> <«
Taken PHT ‘ Untaken PHT
Prediction

49‘
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

\

MIPS Direct Mapped Cache Example

* One word/block, cache size = 1K words (4KB) x
Byte
31 30 1312 11 ... 210
K/ offset
it Tag +20 10 Data
1 Index
Index Valid Tag Data

0
1
2
) > ? ®

102i

1022

1023

120 32
) :g- What kind of locality are we taking advantage of?
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

YAGS, Yet Another Global Scheme (MICRO 1998)

» Using two tagged PHTs
* When a PHT miss, choice PHT makes a prediction.

™

Figure 3.

address

history

.Gf} |

Bi-Mode

choice PHT

direchon PHT NT diveschon PHT T

—

A@‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

pradicion

=

address

history

@ |

chosce PHT

n
-y

cache Figure 6.
YAGS

predichon

From YAGS paper

\

21

Prediction accuracy

« The accuracy of 4KB Gshare is about 93%.
« The accuracy of 4KB PPM is about 97%.

20 |
18 8KB hardware budget H Bimodal
B Gshare
16
O Bimode
g4 mPPM
(]
w12
o
210
.0
o
2= 8
o
3 0
=
4
2
0

SERV-5 .

Average 00—

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Assignment 6

1. Design a four stage pipelined scalar processor supporting MIPS add and bne
instruction in Verilog HDL. Please download procO6.v and procO7.v from the
support page and refer it.

2. Verify the behavior of designed processor using following assembly code.

p
p
p
p
p
p
P
p.
p
p
p
p
p
p
p

.imem.mem[0] =
.imem.mem[1] =
.imem.mem[2] =
.imem.mem[3] =
.imem.mem[4] =
.imem.mem[5] =
.imem.mem[6] =
imem.mem[7] =
.imem.mem[8] =

.imem.mem[9] =

.imem.mem[10]
.imem.mem[11]=
.imem.mem[12]=

.imem.mem[13]=

{6’
{6’
{6’
{6’
{6’
{6’
{6’
{6’
{6’
{6’
'he,
'hs,
"he,

ho,
ho,
ho,
ho,
ho,
hs,
ho,
he,
ho,
he,

'ho,

5'de, 5'de, 5'de, 5'do,

5'd5, 5'dl, 5'd5, 5'de,

5'de, 5'de, 5'do,

5
5
5'de,
5

5'de, 5'de, 5'de, 5'de,
5'de, 5'de, 5'de, 5'de,
5'd4, 5'd5, 16'hfffb};
5'de, 5'de, 5'de, 5'de,
5'de, 5'de, 5'de, 5'de,
5'de, 5'de, 5'd5, 5'de,
5'de, 5'de, 5'de, 5'de,
5'de, 5'de, 5'de, 5'de,
5'd2, 5'de, 16'hfff5};

a O o o O

a O O o O

"h20};
'h20};
"h20};
'h20};
"h20};

'h20};
'h20};
'h20};
'h20};
'h20};

5'de, 5'de, 5'de, 5'de, 6'h20};
5'de, 5'de, 5'de, 5'de, 6'h20};

//
//
//
//
//
//
//
//
//
//
//
//
//
//

L1:

NOP
add
NOP
NOP
NOP
bne
NOP
NOP
add
NOP
NOP
bne
NOP
NOP

$5, $5, $1
while(1){
$4, $5, L1 for(int i=1; il!=4; i++){
}
$5, %0, %0)
$2, 0, L1

.regfile.r[1] = 1; p.regfile.r[2] = 22; p.regfile.r[3] = 0; p.regfile.r[4] = 4; p.regfile.r[5] = 0;
g 5 P g 5 P g 5 P g 5 P g 5

3. Submit a report printed on A4 paper at the beginning of the next lecture.

;\9‘

The report should include a block diagram, a source code in Verilog HDL,

and obtained waveforms of your design.
I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Four stage pipelined processor supporting ADD, which does not adopt
data forwarding (proc06.v, Assignment 4)

Ex stage Wb stage x
IfId IdEx ExWb

If stage Id stage
4
pc
If IR || IfId_IR
— pc imem
Id_RS ~
>
Id_RRS IdEX_RRS m
Id_RT 3 :
& ::
ExWb_RD | - ExWb_RSLT
>l ° +
Id_RRT IdEx_RRT
Id RD IdEx_RD ExWb_RD

;"9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Four stage pipelined processor supporting ADD and BNE, which does not
adopt data forwarding (proc08.v, Assignment 6)

If stage Id stage Ex stage Wb stage \\\\\

Ex_TKN IfId IdEx ExWb

3 <
IdEx_TPC 5
x
IfId_NPC Idex_TPC
Id_TPC
+
Id_IM .
4 — Sign extend & J
7| Sshiftleft2
If_NPC Id_I32
pc —
_h
IE‘ Id_OP IdEx_OP
If_IR || &
N men Ex_TKN
Id_RS
P X \
Id_RRS IdEX_RRS
Id_RT 5
- [
o
ExWb_RD | ¥ F ExWb_RSLT
M
T m
Id_RRT IdEX_RRT I><
X
0n
—
—
Id_RD IdEx_RD ExWb_RD
=

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

