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Scalar and Superscalar processors

« Scalar processor can execute at most one single instruction per clock \
cycle using one ALU.
« TIPC (Executed Instructions Per Cycle) is less than 1.

« Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

« TIPC (Executed Instructions Per Cycle) can be more than 1.
 using n pipelines is called n-way superscalar
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(a) pipeline diagram of scalar processor
) jgp‘ (b) pipeline diagram of 2-way superscalar processor
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A four stage pipelined 2-way superscalar processor supporting ADD
which does not adopt data forwarding (procl0, Assignment 5)
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Waveform of ProclO
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Exploiting Instruction Level parallelism (ILP) X
\

A superscalar processor has to handle some flows
efficiently to exploit ILP
« Control flow

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

* The main obstacles are branch instruction (BNE, BEQ)
e Another obstacle is instruction cache

* Register data flow
« Memory data flow

~ "\ ="
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Branch predictor x
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

« Let's guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

~ "\ ="
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Sample program: vector add

##tdefine VSIZE 4

void vadd(long *A, long *B, long *C){

for(i=0; i<VSIZE; i++)

C[i] += (A[i] + B[i]);

Executed instruction sequence

B3 —

B3 —»
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Simple branch predictor: Branch Always x
\

* How to predict
* It always predictsas 1.
* How to update
* Nothing cause it does not use any memory.

~ "\ ="
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Simple branch predictor: 2bit counter

» Tt uses two bit register or a counter.

* Hot to predict

e Tt predicts as 1if the MSB of the register is one, otherwise predicts as O.

* How to update the register

e If the branch outcome is taken and the value is not 3, then increment the

register.

« TIf the branch outcome is untaken and the value is not O, then decrement

the register.
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Sample program: vector add with two branches

31[ =0 }

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {

¥
¥

Executed instruction sequence

;‘@‘
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if(A[i]<@) error_routine();

C[i] += (A[i] + B[i]);

BE { }
Error check

v
BZ[ }
*C:*C+(*A+*B)

83[

False

return }

Control flow graph
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Simple branch predictor: bimodal

* Program has many branch instructions. The behavior may depend on

each branch. Use one counter for one branch instruction

* How to predict

» Select one counter using PC, then it predicts 1 if the MSB of the

register is one, otherwise predicts O.

* How to update

« Select one counter using PC, then update the counter same manner

as 2bit counter.
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Prediction accuracy of simple branch predictors

« The accuracy of branch always is about 50%. \
« The accuracy of bimodal predictor of 4KB memory is about 88%.
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Sample program: vector add with two branches

31[ =0 }

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {

¥
¥

Executed instruction sequence
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if(A[i]<@) error_routine();

C[i] += (A[i] + B[i]);

BE { }
Error check

v
BZ[ }
*C:*C+(*A+*B)

83[

False

return }

Control flow graph
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Simple branch predictor: bimodal

* Program has many branch instructions. The behavior may depend on
each branch. Use one counter for one branch instruction

* How to predict

» Select one counter using PC, then it predicts 1 if the MSB of the
register is one, otherwise predicts O.

* How to update

« Select one counter using PC, then update the counter in the same
way as 2bit counter.

Pattern History Table (PHT) Vielget Taken
Program o ont STr'ongly Weakly
Counter entry Taken (11) Un‘raken Taken (10)
Taken g UnTaken
n Prediction e
y R Taken
7 > — Weakly 4— Strongly
Untaken (01) / — = = Untaken (00
Unta k > ,
;,—/ . [ 4
o 2 bit Untaken
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An innovation in branch predictors in 1993 X
\

 Using branch history
 global branch history
* local branch history

» 2-level branch predictor and Gshare

» Assume predicting the sequence 1110 1110 1110 1110 1110 ...

11101110 ?
111011101 ?
1119111011 »
11191110111 ?
111911101110 ?

~ ="
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Recommended Reading
\

e Combining Branch Predictors
e Scott McFarling, Digital Western Research Laboratory
« WRL Technical Note TN-36, 1993

* A quote:
“In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given

counter array size."

=)
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Gshare (TR-DEC 1993)
* How to predict x

« Using the exclusive OR of the global branch history and PC to access PHT,
then MSB of the selected counter is the prediction.

* How to update
« Shifting BHR one bit left and update LSB by branch outcome in IF stage.
e Update the used counter in the same way as 2BC in WB stage.

Program 1110111011 (shift register)

Counter
\ /Br'anch History
Register (BHR)
n m Taken
4 4 Pattern History Table (PHT) Taken
l l on entry STf'Ol’lgly e — Weqkly
XOR (P Taken (11) Untaken Taken (10)
Taken e -
-’ Untaken
n ' Prediction g
/ > Taken
7 > —> Weakly — Strongly
Untaken (01) TJ T k_ > Untaken (00) \
A= \ ) nraken V\ _ /
~@ 2 bit Untaken
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Exercise: how to update PHT and BHR of Gshare

\
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Bi-Mode (MICRO 1997)
\

* A choice predictor (bimodal) is used as a meta-predictor

* How to predict
e Like Gshare, both of Taken PHT and Untaken PHT make two
predictions.
« Select one among them by the choice predictor which tracks the
global bias of a branch.

e How to upda-re BHR | Program ClounTer
e The used PHT is updated
in the same way as 2BC. 14 ‘
XORP g ]

« Choice predictor is update
in the same way as bimodal

Choice predigtor

> <«
Taken PHT ‘ Untaken PHT
Prediction
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MIPS Direct Mapped Cache Example

* One word/block, cache size = 1K words (4KB) x
Byte
31 30 1312 11 ... 210
K/ offset
it Tag +20 10 Data
1 Index
Index Valid Tag Data

0
1
2
) > ? ®

102i

1022

1023

120 32
) :g- What kind of locality are we taking advantage of?
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YAGS, Yet Another Global Scheme (MICRO 1998)

» Using two tagged PHTs
* When a PHT miss, choice PHT makes a prediction.
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Prediction accuracy

« The accuracy of 4KB Gshare is about 93%.
« The accuracy of 4KB PPM is about 97%.
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Assignment 6

1. Design a four stage pipelined scalar processor supporting MIPS add and bne
instruction in Verilog HDL. Please download procO6.v and procO7.v from the
support page and refer it.

2. Verify the behavior of designed processor using following assembly code.

p
p
p
p
p
p
P
p.
p
p
p
p
p
p
p

.imem.mem[0] =
.imem.mem[1] =
.imem.mem[2] =
.imem.mem[3] =
.imem.mem[4] =
.imem.mem[5] =
.imem.mem[6] =
imem.mem[7] =
.imem.mem[8] =

.imem.mem[9] =

.imem.mem[10]
.imem.mem[11]=
.imem.mem[12]=

.imem.mem[13]=

{6’
{6’
{6’
{6’
{6’
{6’
{6’
{6’
{6’
{6’
'he,
'hs,
"he,

ho,
ho,
ho,
ho,
ho,
hs,
ho,
he,
ho,
he,

'ho,

5'de, 5'de, 5'de, 5'do,

5'd5, 5'dl, 5'd5, 5'de,

5'de, 5'de, 5'do,

5
5
5'de,
5

5'de, 5'de, 5'de, 5'de,
5'de, 5'de, 5'de, 5'de,
5'd4, 5'd5, 16'hfffb};
5'de, 5'de, 5'de, 5'de,
5'de, 5'de, 5'de, 5'de,
5'de, 5'de, 5'd5, 5'de,
5'de, 5'de, 5'de, 5'de,
5'de, 5'de, 5'de, 5'de,
5'd2, 5'de, 16'hfff5};

a O o o O

a O O o O

"h20};
'h20};
"h20};
'h20};
"h20};

'h20};
'h20};
'h20};
'h20};
'h20};

5'de, 5'de, 5'de, 5'de, 6'h20};
5'de, 5'de, 5'de, 5'de, 6'h20};

//
//
//
//
//
//
//
//
//
//
//
//
//
//

L1:

NOP
add
NOP
NOP
NOP
bne
NOP
NOP
add
NOP
NOP
bne
NOP
NOP

$5, $5, $1
while(1){
$4, $5, L1 for(int i=1; il!=4; i++){
}
$5, %0, %0 )
$2, 0, L1

.regfile.r[1] = 1; p.regfile.r[2] = 22; p.regfile.r[3] = 0; p.regfile.r[4] = 4; p.regfile.r[5] = 0;
g 5 P g 5 P g 5 P g 5 P g 5

3. Submit a report printed on A4 paper at the beginning of the next lecture.

;\9‘

The report should include a block diagram, a source code in Verilog HDL,

and obtained waveforms of your design.
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Four stage pipelined processor supporting ADD, which does not adopt
data forwarding (proc06.v, Assignment 4)

Ex stage Wb stage x
IfId IdEx ExWb

If stage Id stage
4
pc
If IR || IfId_IR
— pc imem
Id_RS ~
>
Id_RRS IdEX_RRS m
Id_RT 3 :
& ::
ExWb_RD | - ExWb_RSLT
>l ° +
Id_RRT IdEx_RRT
Id RD IdEx_RD ExWb_RD

;"9‘
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Four stage pipelined processor supporting ADD and BNE, which does not
adopt data forwarding (proc08.v, Assignment 6)

If stage Id stage Ex stage Wb stage \\\\\

Ex_TKN IfId IdEx ExWb

3 <
IdEx_TPC 5
x
IfId_NPC Idex_TPC
Id_TPC
+
Id_IM .
4 — Sign extend & J
7| Sshiftleft2
If_NPC Id_I32
pc —
_h
IE‘ Id_OP IdEx_OP
If_IR || &
N men Ex_TKN
Id_RS
P X \
Id_RRS IdEX_RRS
Id_RT 5
- [
o
ExWb_RD | ¥ F ExWb_RSLT
M
T m
Id_RRT IdEX_RRT I><
X
0n
—
—
Id_RD IdEx_RD ExWb_RD
=

49‘
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