
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

6. Instruction Level Parallelism: Instruction Fetch 
and Branch Prediction

Ver. 2019-12-23aFiscal Year 2019

Course number: CSC.T433
School of Computing, 
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp 



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Scalar and Superscalar processors

• Scalar processor can execute at most one single instruction per clock 
cycle using one ALU. 
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction per clock 
cycle by executing multiple instructions using multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.
• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor
(b) pipeline diagram of 2-way superscalar processor



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

A four stage pipelined 2-way superscalar processor supporting ADD 
which does not adopt data forwarding (proc10, Assignment 5)

using negedge CLK 
to update

+

pc
If_IRS

8

pc

If stage Id stage

Id_RRS1

Id_RRT1

IdEx_RRS1

Ex_RSLT1

Ex stage Wb stage
IfId IdEx ExWb

ExWb_RSLT2

+

imem

IdEx_RRT1

IdEx_RD2 ExWb_RD2

Id_IR1(IfId_IRS[31:0])

IfId_IRS

Id_RS1

Id_RT1

IdEx_RRS2

Ex_RSLT2+

IdEx_RRT2

Id_RRS2

Id_RRT2

Pipeline1

Id_RT2

regfile

IdEx_RD1Id_RD1

ExWb_RSLT1

ExWb_RD1

Id_IR2(IfId_IRS[63:32])

Id_RD2

Id_RS2
Pipeline2



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Waveform of Proc10

add  $0,  $0,  $0   # NOP
add  $0,  $0,  $0   # NOP
add  $1,  $1,  $1   # $1 = 0x16 + 0x16
add  $2,  $2,  $2   # $2 = 0x21 + 0x21
add  $3,  $3,  $3   # $3 = 0x2c + 0x2c
add  $4,  $4,  $4   # $4 = 0x37 + 0x37

r[1]=22, r[2]=33, r[3]=44, and r[4]=55



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Exploiting Instruction Level parallelism (ILP)

• A superscalar processor has to handle some flows 
efficiently to exploit ILP
• Control flow

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)
• Another obstacle is instruction cache

• Register data flow
• Memory data flow



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Branch predictor

• A branch predictor is a digital circuit that tries to guess or predict 
which way (taken or untaken) a branch will go before this is known 
definitively.
• A random predictor will achieve about a 50% hit rate because the 

prediction output is 1 or 0.
• Let’s guess the accuracy. What is the accuracy of typical branch 

predictors for high-performance commercial processors?



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Sample program: vector add

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) 
C[i] += (A[i] + B[i]);

}

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False True

B1

B2

B3

i = 0

Control flow graph

B1 B2 B2 B2 B2 B3

B3 B3 B3 B2
Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

Taken (1) Taken (1) Taken (1) Not Taken (0)

Executed instruction sequence



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Simple branch predictor: Branch Always

• How to predict
• It always predicts as 1.

• How to update
• Nothing cause it does not use any memory.



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Simple branch predictor: 2bit counter

• It uses two bit register or a counter.
• Hot to predict

• It predicts as 1 if the MSB of the register is one, otherwise predicts as 0.
• How to update the register

• If the branch outcome is taken and the value is not 3, then increment the 
register.

• If the branch outcome is untaken and the value is not 0, then decrement 
the register.

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken

2 bit



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Sample program: vector add with two branches

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

0    1      0    1       0    1       0     0  

Executed instruction sequence

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

Control flow graph



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Simple branch predictor: bimodal

• Program has many branch instructions. The behavior may depend on 
each branch. Use one counter for one branch instruction

• How to predict
• Select one counter using PC, then it predicts 1 if the MSB of the 

register is one, otherwise predicts 0.
• How to update

• Select one counter using PC, then update the counter same manner 
as 2bit counter. 

Pattern History Table (PHT)
Program  
Counter

…

2n entry

Predictionn

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Prediction accuracy of simple branch predictors

Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.

• The accuracy of branch always is about 50%.
• The accuracy of bimodal predictor of 4KB memory is about 88%.

0

10

20

30

40

50

60

70

80

90

100
F
P
-
1

F
P
-
2

F
P
-
3

F
P
-
4

F
P
-
5

IN
T
-
1

IN
T
-
2

IN
T
-
3

IN
T
-
4

IN
T
-
5

M
M

-
1

M
M

-
2

M
M

-
3

M
M

-
4

M
M

-
5

S
E
R
V
-
1

S
E
R
V
-
2

S
E
R
V
-
3

S
E
R
V
-
4

S
E
R
V
-
5

A
ve

ra
ge

M
is

pr
e
di

c
ti
o
n
s 

R
at

e
 (
%
)

Branch Always

2bit counter

Bimodal

8KB hardware budget



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Sample program: vector add with two branches

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

0    1      0    1       0    1       0     0  

Executed instruction sequence

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

Control flow graph



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Simple branch predictor: bimodal

• Program has many branch instructions. The behavior may depend on 
each branch. Use one counter for one branch instruction

• How to predict
• Select one counter using PC, then it predicts 1 if the MSB of the 

register is one, otherwise predicts 0.
• How to update

• Select one counter using PC, then update the counter in the same 
way as 2bit counter. 

Pattern History Table (PHT)
Program  
Counter

…

2n entry

Predictionn

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

An innovation in branch predictors in 1993

• Using branch history
• global branch history
• local branch history

• 2-level branch predictor and Gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 …

11101110 ?
111011101 ?
1110111011 ?
11101110111 ?
111011101110 ?



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Recommended Reading

• Combining Branch Predictors
• Scott McFarling, Digital Western Research Laboratory
• WRL Technical Note TN-36, 1993 

• A quote:
“In this paper, we have presented two new methods for improving 
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address 
to access predictor counters results in better performance for a given 
counter array size.”



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Gshare (TR-DEC 1993)
• How to predict

• Using the exclusive OR of the global branch history and PC to access PHT, 
then MSB of the selected counter is the prediction.

• How to update
• Shifting BHR one bit left and update LSB by branch outcome in IF stage.
• Update the used counter in the same way as 2BC in WB stage.

Program 
Counter

XOR

n

n m
Pattern History Table (PHT)

…

2n entry

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

1110111011 （shift register）

Branch History 
Register (BHR)



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Exercise: how to update PHT and BHR of Gshare



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Bi-Mode (MICRO 1997)

• A choice predictor (bimodal) is used as a meta-predictor
• How to predict

• Like Gshare, both of Taken PHT and Untaken PHT make two 
predictions.

• Select one among them by the choice predictor which tracks the 
global bias of a branch.

• How to update
• The used PHT is updated 

in the same way as 2BC.
• Choice predictor is update 

in the same way as bimodal

Untaken PHTTaken PHT

…

Prediction

Choice predictor

…

Program Counter

XOR

BHR
…



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30       . . .         13 12  11     . . .        2  1  0
Byte 
offset



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

YAGS, Yet Another Global Scheme (MICRO 1998)

• Using two tagged PHTs
• When a PHT miss, choice PHT makes a prediction.

From YAGS paper



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Prediction accuracy

• The accuracy of 4KB Gshare is about 93%.
• The accuracy of 4KB PPM is about 97%.

0

2

4

6

8

10

12

14

16

18

20
F
P

-
1

F
P

-
2

F
P

-
3

F
P

-
4

F
P

-
5

IN
T
-
1

IN
T
-
2

IN
T
-
3

IN
T
-
4

IN
T
-
5

M
M

-
1

M
M

-
2

M
M

-
3

M
M

-
4

M
M

-
5

S
E
R

V
-
1

S
E
R

V
-
2

S
E
R

V
-
3

S
E
R

V
-
4

S
E
R

V
-
5

A
ve

ra
ge

M
is

pr
e
di

c
ti
o
n
s 

R
at

e
 (

%
)

Bimodal

Gshare

Bimode

PPM

8KB hardware budget



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Assignment 6
1. Design a four stage pipelined scalar processor supporting MIPS add and bne

instruction in Verilog HDL. Please download proc06.v and proc07.v from the 
support page and refer it. 

2. Verify the behavior of designed processor using following assembly code.

3. Submit a report printed on A4 paper at the beginning of the next lecture.
• The report should include a block diagram, a source code in Verilog HDL, 

and obtained waveforms of your design.

p.imem.mem[0] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[1] = {6'h0, 5'd5, 5'd1, 5'd5, 5'd0, 6'h20};  // L1: add  $5, $5, $1

p.imem.mem[2] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[3] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[4] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[5] = {6'h5, 5'd4, 5'd5, 16'hfffb};           //     bne $4, $5, L1

p.imem.mem[6] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[7] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[8] = {6'h0, 5'd0, 5'd0, 5'd5, 5'd0, 6'h20};  //     add  $5, $0, $0

p.imem.mem[9] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.imem.mem[10]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[11]= {6'h5, 5'd2, 5'd0, 16'hfff5};           //     bne $2, $0, L1

p.imem.mem[12]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.imem.mem[13]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.regfile.r[1] = 1; p.regfile.r[2] = 22; p.regfile.r[3] = 0; p.regfile.r[4] = 4; p.regfile.r[5] = 0;

while(1){
for(int i=1; i!=4; i++){

}
}



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Four stage pipelined processor supporting ADD, which does not adopt 
data forwarding (proc06.v, Assignment 4)

+

pc
If_IR

4

pc

If stage Id stage

Id_RRS

Id_RRT

Id_RS

Id_RT
IdEx_RRS Ex_RSLT

Ex stage Wb stage
IfId IdEx ExWb

ExWb_RSLT

Id_RD

+

imem

regfile

IdEx_RRT

IfId_IR

IdEx_RD ExWb_RD

ExWb_RD



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Four stage pipelined processor supporting ADD and BNE, which does not 
adopt data forwarding (proc08.v, Assignment 6)

+

pc
If_IR

4

pc

If stage Id stage

Id_RRS

Id_RRT

Id_RS

Id_RT
IdEx_RRS

Ex_RSLT

Ex stage Wb stage

IfId IdEx ExWb

ExWb_RSLT

Id_RD

imem

regfile

IdEx_RRT

IfId_IR

IdEx_RD ExWb_RD

ExWb_RD

Sign extend & 
Shift left 2

Id_IM

+

Ex_TKN

If_NPC Id_I32

Id_TPC

M
ux

IfId_NPC IdEx_TPC

IdEx_TPC

Ex_TKN

+, !=

Id_OP IdEx_OP


