
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

3. Memory Hierarchy Design

Ver. 2019-12-08aFiscal Year 2019

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Datapath of single-cycle processor supporting ADD

op rs rt rd shamt funct

0x800 add $t0, $s1, $s2 [add $8, $17, $18]

IR[15:11]IR[20:16]IR[25:21]

$17 = 3
$18 = 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Datapath of processor supporting ADD and ADDI
IR[20:16]IR[25:21]

$8 = 7

0x804 addi $t1, $t0, 3 [addi $9, $8, 3]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Waveform of proc02

add $0, $0, $0 # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}
addi $t0, $zero, 3 # {6'h8, 5'd0, 5'd8, 16'd3}
addi $t1, $zero, 5 # {6'h8, 5'd0, 5'd9, 16'd5}
add $t2, $t0, $t1 # {6'h0, 5'd8, 5'd9, 5'd10, 5'd0, 6'h20}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

MIPS R3000 Instruction Set Architecture (ISA)

• Instruction Categories
• Computational
• Load/Store
• Jump and Branch
• Floating Point

• coprocessor
• Memory Management
• Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd shamt funct

rs rt immediate

jump target (immediate)

3 Instruction Formats: all 32 bits wide

R format

I format

J format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Machine Language - Load Instruction

• Load/Store Instruction Format (I format):
lw $t0, 24($s2)

op rs rt 16 bit offset

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 = 0x120040ac

0x120040ac$t0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Exercise

• Compiling an Assignment When an Operand Is in Memory

• g = h + A[8];
• Let’s assume that A is an array of 100 words and the

compiler has associated the variable g and h with the
registers $s1 and $s2 as before. Let’s also assume that the
starting address, or base address, of the array is in $s3.
Compile this C assignment statement.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

MIPS Memory Access Instructions

• MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

• The data is loaded into (lw) or stored from (sw) a register
in the register file – a 5 bit address

• The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value
• A 16-bit field meaning access is limited to memory locations

within a region of 213 or 8,192 words (215 or 32,768 bytes)
of the address in the base register

• Note that the offset can be positive or negative

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Exercise

• Compiling Using Load and Store

• A[12] = h + A[8];
• Assume variable h is associated with register $s2 and base

address of the array A is in $s3. What is the MIPS
assembly code for the C assignment statement?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Instruction Level Parallelism (ILP)

(1)

(2)

(4)

(3)

lw $t0, 32($s3) (1)

add $t0, $s2, $t0 (2)

sw $t0, 48($s3) (3)

lw $t1, 32($s4) (4)

data
dependency

?
ambiguous
data dependency

?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Datapath of processor supporting ADD, ADDI, LW
IR[20:16]IR[25:21]

$8 = 0x10
mem[0x14] = 3

0x808 lw $t2, 4($t0) [lw $10, 4($8)]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

A Typical Memory Hierarchy

Second
Level
Cache

(SRAM)

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s
Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

 By taking advantage of the principle of locality
 Present much memory in the cheapest technology
 at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

8
Index

Data (4 word)
Index TagValid

0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words (4KB)

What kind of locality are we taking advantage of?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Four-Way Set Associative Cache
• 28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8

Index
22Tag

Hit Data

32

4x1 select

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Cache Associativity & Replacement Policy

Bookshelf

Desk

Book

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.

• When a miss occurs,
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time
• Must have hardware to keep track of when each way’s block was

used
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced
(and reset the other way’s bit)

• Random

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache
• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of

Science
• MICRO-40, pp. 445-454, 2007
• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to narrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

empty increment dummy

oldest (FIFO) oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Assignment 3

1. Design a single-cycle processor supporting MIPS add, addi, lw
and sw instructions in Verilog HDL. Please download proc03.v
from the support page and refer it.

2. Verify the behavior of designed processor using following
assembly code
• add $0, $0, $0 # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}
• addi $t0, $zero, 8 # {6'h8, 5'd0, 5'd8, 16'd8}
• sw $t0, 4($t0) # {6'h2b,5'd8, 5'd8, 16'd4}
• lw $t1, 4($t0) # {6'h23,5'd8, 5'd9, 16'd4}
• addi $t2, $t1, 6 # {6'h8, 5'd9, 5'd10,16'h6}

3. Submit a report printed on A4 paper at the beginning of the
next lecture.
• The report should include a block diagram, a source code in Verilog

HDL, and obtained waveforms of your design.

