Fiscal Year 2019

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

3. Memory Hierarchy Design

f
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Datapath of single-cycle processor supporting ADD

IR[25:21] IR[20:16] IR[15:11] x

op rs rt rd shamt funct
Ox800 add $to, $s1, $s2 [add $8, $17, $18]

Add

Y/

Instruction [25:21] Read
,.| Fead *| register 1
PC " | address d Read | .
Instruction [20:16] Pead data 1
. i Zero
Instruction _I ' register 2 >A|_|_|
31:0 - ALL
[| | Write dgf-fg [result
Instruction Instruction register —_— i
memaory . >
1 Write
Bl 1
data Registers | | N

$17
$18

;"9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

n nu

W
|
I

Datapath of processor supporting ADD and ADDI

IR[25:21] IR[20:16]
op rs rt 16 bit immediate | format
ox804 addi $t1, $to, 3 [addi $9, $8, 3]

Ry

Instruction [25:21] Read
,.| Fead *| register 1
PC ™~ address d Read .
Instruction [20:16] Pead data 1
I " i Zero
Instruction _I 0 register 2 >A|_|_|
31:0 ALL
[| u Wri_te dgf-fg — result
Instruction | | |stryction [15:11] | x register i
memaory . - 4
| write d
data Registers

Instruction [15:0]

Sign
extend

$8 = 7

Instruction [5:0]

™

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Waveform of procQO?2

Signals
Time

CLK
RST_X

pcl31:
ir[31:
opl5:
rs[4:
rtla:
rd[a:
imm[31:
rrs[31:
rrt[31:
RRT[31:

rdst[4

result[31:

8]
8]
8]
8]
8]
8]
8]
8]

Waves
108 ns 200 ns 308 ns 400 ns 500 ns

(= Te]=Te] =T gaaaeaad ARAABARE pageaaac pegooala
Xx+ 20000028 20050003 20050845 Bless5azo
WX aa
WX oa
aa
2a
¥x+ BE0EE828

gegeRgas El BEg0ae5

XX e

BN oo CEEE EI CEEEEEEE CECEEEREE CEEEEEEE
: -

add $0, $0, $0 # NOP {6'he, 5'de, 5'de, 5'dd, 5'de, 6'h20}
addi $to0, $zero, 3 # {6'h8, 5'de, 5'd8, 16'd3}

addi $t1, $zero, 5 # {6'h8, 5'de, 5'd9, 16'd5}

add $t2, $t@, $t1 # {6'he, 5'd8, 5'd9, 5'd1@, 5'de, 6'h20}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

MIPS R3000 Instruction Set Architecture (ISA)

e Instruction Categories

=)

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

. Registers

Computational

Load/Store RO - R31

Jump and Branch

Floating Point

e coprocessor =

Memory Management w7

Special Lo

3 Instruction Formats: all 32 bits wide

OP rs rt rd shamt | funct R format
OP Is rt Immediate | format
OP jump target (immediate) J format

Machine Language - Load Instruction

« Load/Store Instruction Format (I format):

op IS rt 16 bit offset
Memory

Oxffffffff

24,, + $s2 = $t0 ~—1— 0x120040ac
... 0001 1000 $s2 — Ox12004094
+...1001 0100 0x0000000
... 1010 1100 = 0x120040ac 0?0000000%
0x00000004

0x00000000

™

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

data

word address (hex)

\

Exercise
N\

Compiling an Assignment When an Operand Is in Memory

g = h + A[8];

Let's assume that A is an array of 100 words and the
compiler has associated the variable g and h with the
registers $sl and $s2 as before. Let's also assume that the

starting address, or base address, of the array is in $s3.
Compile this C assignment statement.

MIPS Memory Access Instructions \3\%
\

« MIPS has two basic data transfer instructions for
accessing memory

Iw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

« The data is loaded into (Iw) or stored from (sw) a register
in the register file —a 5 bit address

« The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

« A 16-bit field meaning access is limited to memory locations
within a region of +213 or 8,192 words (+2!° or 32,768 bytes)
of the address in the base register

* Note that the offset can be positive or negative

=)

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exercise

» Compiling Using Load and Store

e A[12] = h + A[8];

« Assume variable h is associated with register $s2 and base
address of the array A is in $s3. What is the MIPS
assembly code for the C assignment statement?

\

Instruction Level Parallelism (ILP)

\
1w $t0, 32($s3) (1)
dd $tg\\;\£\\§%@ (2) |
a , $s2,
Sw $t0, 48(%$s3) (3) <:::>
? / data
| dependency
1w $t1, 32($s4) (4)

Bo

ambiguous
data dependency

® (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Datapath of processor supporting ADD, ADDI, LW

IR[25:21]

IR[20:16]

op

I's

It

16 bit immediate

ox808 1w $t2, 4($t0)

[1w $10, 4($8)]

| format

Ry

$8 = 0ox10
mem[©Ox14] = 3

;"@‘

Read

| address

Instruction
[31:0]

Instruction
memory

Instruction [25:21]

Instruction [20:18]

]

L

|

Instruction [15:11]

Instruction [15:0]

| Read
register 1 Read .
Read data 1 2
5 " | register 2 > 1o
ALU
M L] write et oy
X register
1
| write d
data Registers
Sign

extend

Instruction [5:0]

Read

Address data

Data

| Write memory

data

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

11

A Typical Memory Hierarchy

By taking advantage of the principle of locality
Present much memory in the cheapest technology

at the speed of fastest technology PP
On_chlp Components ------------------------ :-;-:-;-:-;l; -------
Control e .
=t Second Secondary
-~ = Level Memory
Datapath | P || = Cache (Disk)
ol B (SRAM)
o[l Jo
gy L3 i s e 5 e e B ol S el T LSl TLE LY T
Speed (%cycles): ¥4's 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s G'stoT's
Cost: highest lowest
*@9‘ TLB: Translation Lookaside Buffer

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

MIPS Direct Mapped Cache Example

* One word/block, cache size = 1K words (4KB) x
Byte
31 30 1312 11 ... 210
K/ offset
it Tag +20 10 Data
1 Index
Index Valid Tag Data

0
1
2
) > ? ®

102i

1022

1023

120 32
) :g- What kind of locality are we taking advantage of?
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Multiword Block Direct Mapped Cache

 Four words/block, cache size = 1K words (4KB)

Byte
i 3130 ... 1312 11 ... 43210
Hit 2+ offset DaAta
Tag ~20 ~+8 Block offset
Index
Data (4 word)
Index Valid Tag < >
0
1
2
——
253
254
255
420
J .
| ~
32
Nyl What kind of locality are we taking advantage of?

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Four-Way Set Associative Cache

« 28:=256 sets each with four ways (each with one block)

31 30 1312 11 21 O/Byte offset
%
Tag ~8
Index

IndexV Tag Data V Tag V Tag Data V Tag Data

0 0 0 0

1 1 1 1

2 2 2 2
e 9 ? Y Y ? ° 9

253 253 253 253

254 254 254 254

255 255 255 255

. ® Ul

=)

A@‘

Hit

¥ Data

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

|
A\4x1 select /

15

e, G

Cache Associativity & Replacement Policy \

Book
Bookshelf

\\I/—%\j/: Desk

QSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

~

=3

Costs of Set Associative Caches

 When a miss occurs,
which way’s block do we pick for replacement ?

» Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time
* Must have hardware to keep track of when each way’s block was
used
* For 2-way set associative, takes one bit per set —

set the bit when a block is referenced
(and reset the other way’s bit)

___+ Random

=V

AN

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

Recommended Reading
\

« Emulating Optimal Replacement with a Shepherd Cache

 Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of
Science =

« MICRO-40, pp. 445-454, 2007
« Session 8: Cache Replacement Policies

* A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to harrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT."

=)

49‘
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

\

Memory Hierarchy Design

Memory Hierarchy

Fp— L2 and lower caches
@ Objective : Need to reduce expensive
{ - memory accesses
- @ Design : Large size, Higher associativity,
E-‘DFJHJI-?-'I'__#"{ x\mml .
aasses, (| gn | s, Complex design
I"'Iu:lﬂ-li.ui-h ff'hcmm
INTERACTION -

@ Problem : Do not interact with program
directly and observe filtered temporal locality

@ High Associativity — replacement policy crucial to performance

@ L1 cache services temporal accesses — Lack of temporal
accesses at L2 — LRU replacement inefficient

@ Replacement decisions are taken off the processor critical path

ﬁa Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

LRU has room for improvement

LRU vs OPT

& |Esiz2ke-ruts M s1zke4rura Ll 256KB-opts [512KB-0pt16

D_

|

mﬁﬁhhﬁﬁ

{'.__-_;!:r:t-__ mcf geoo luca swim applr’é.__r-jﬁmp MUI[“ vpr-f_fﬁﬁé}{rﬁﬁgrid ap%if:avgzﬁ

MPKI for SPEC2000 suite, Benchmarks with MPKI < 5 not plotted but
count towards average

Huge performance gap between LRU and OPT
OPT at half the size preferable to LRU at double the size

A

<

MPKI: Miss Per Kilo Instructions

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

\

OPT: Optimal Replacement Policy

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

Q Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady 1966 Mattson1970,McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing

access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead

windows to identify replacement candidates and modify current
cache state [Sugumar-SIGMETRICS1993]

@D Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Example of Optimal Replacement Policy
e

Understanding OPT

e —_— T T

A M !A A A A A A A A A A
Access Sequence 5}1: 61731711415 T2 TS T e T
PPTomderfor Asf” (o i g ! {oiaigf | 1 |
P'deﬂffﬂf : : :.-'] :]. : g : 3 : : : : 4"':
P] I R R A S e T S S S)

@ Consider 4 way associative cache with one set initially containing lines

(41,42 43 _44), consider the access stream shown in table

@ Access 45 misses, replacement decision proceeds as follows

&) Identify replacement candidates - (A4 47 A3 _44.45)
& Lookahead and gather imminence order - shown in table,
lookahead window circled

Q) Make replacement decision : 45 replaces A4

@ Ag self-replaces, lookahead window and imminence order in table

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Shepherd Cache emulation OPT

Emulating OPT with a Shepherd Cache

@ Split the cache into two logical parts

PROCESSOR @ Main Cache (MC) for which optimal
replacement is emulated
@ Shepherd Cache (SC) used to provide a
L1 lookahead and guide replacements from MC
o~ towards OPT

2 @ Operation

sh:phcrd;?__- & Buffer lines temporarily in SC before maving
Cache them to MC, SC acts as a FIFO buffer
I‘% Q While in SC, gather imminence information and
l emulate lookahead
& When forced out of SC, make an MC
replacement based on the gathered imminence
order

MEMORY

ﬁa Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Shepherd Cache Overview

Overview of Shepherd Caching

@ To emulate MC with 4 ways per set and 2 SC

CM

@ Each column has one [Next Value Counter
lasa agasa;a,

(NVC) to track the next value to assign along
column

NVC | [NVE, i
I I B | W'EFS per Eet
SC, ' @ To gather imminence order add a counter
5C B | matrix (CM)
Al ' @ CM has one column per SC way to track
Ag | imminence order w.r.t to it
MC 1 As ' @ CM has one row per SC and MC line as any
Ay : of them can be a replacement candidate
|
|

AgAyAs A7 A Ag |

@D Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

NVC,

sC,
SC|

MC

|
J|l.ai5_.a|. |_.‘|.ﬁ__.5|.3_.‘|. |_.5|._1__

AgAqyAghqgAgAg

(a) Imitial State

NVCs

1

1

1

i

s Ag Oje|
SELAs ele| !
Al 0f 1

1

e Az elel !
Aj 1O
Ay 202]
CM

Ag Ay Ag Ay A ALl

-":’».Az.ﬁs_*’t?_-’*ﬁ.-"ai

(g) A4 added to
optimal order of
5C,8Cs

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

increment

1 1 1 1
NV E| ! NVCs ! ! NVCs I
- - ! - i
sC| e \E\ﬁﬂg e i 5C 1 : sc[A, 0le
SCy| As el | 56 *"-W*\c 'S, A NN ele
£y ' A . .
A el | ! 0| |1 U N 0 e
Az el | ! A el |! *"3\ e
MC MC MC MC AR
Az e i Az e i Az 170
Ay el |! i el |! i ele
CM cM CM
1 1
AsA AgAs A Ay AsATAgAz A Ayl AsA As A Agdzag Ay
AsA3AsA7AgAg!l AsAzAsAgAgAgl As Ay AsAgAgAg!

Ag Ay AgAq Ay Ay

AgAgxAgAgAg Ag

by As inserted
at S

1

NV Cs !

" 1

scf Ag Ole| i

E'E'] .—’-._; __; __; :

Al 0 1] 1

1

e Ag ele| !

Ay 1{0 i

Ag 2[2]

CM |

|

i

|

!

th) Az added to
optimal order of
8,80

(cl A1 added to (dy As inserted
the optimal order at SCo
of S

oldest (FIFO)

S04
SC

MC

Ag A AghAz Ay Ay As.‘*l--d“ﬁ*"afl.d‘-l
(1) A2 added to i) Az moves

from SC to MC
replacing Az

optimal order of
5C,8Cs

NVCs

sy AL [0]e]
SC As ele
Ay I

Az ele
MCT ilo
Ay ele

o

Ag A Ag Az A Ay,

AsAqAsAg Ag Ag : AsAgAgAgA E._*"h‘-i

(e} Aa added to
the optimal order
of SC1,.5C

NYCs |_IF

(f) Ar added to
optimal order of
SC'

Ai_.ﬁ.].""‘-E:.‘ﬁ‘_'i.'a']_A.

1

1

= 1

' 1

sC Ag o5

SCL Ay el0| !

A el 1] |

1

A5 el 3 !
MC

Az el

Ag el 2!

CM i

|

|

1

1

A Ax Ag AgAghg

4

]

(k) As added to
optimal order

oldest
|
PR |
sc VA Oe| i
SC| .‘l-"|—. |: F 1
1
Ay ele i
A5 elel !
MC !
Ag cle|
Ay elel!
CM |
1

Ag Ay Ag Az Ay Ag
1

Ag Az AsAg AgAg

{1} Self Replace-
ment (Ag evicts
itself)

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

\

25

Shepherd cache bridges 32 - 52% of the gap

Bridging the performance gap

1 — Bridging the LRU-OPT gap
W lru=: JB
10 M @ SC-4 bridges 32-52%
9- A sc-6 (T1E) of gap
b zoo-4 (48E)
< 8- < scen (258) @ SC moves closer to
s] M opt-16 (-) OPT as cache size
9k} u
& increases
S 6-
=T
:
4
3
2 T T 1
512KE 1MB 2MB 4MB
Avg MPKI over SPEC2000 suite MPKI: Miss Per Kilo Instructions

ﬁa Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Assignment 3

\
1. Design a single-cycle processor supporting MIPS add, addi, Iw 3%
and sw instructions in Verilog HDL. Please download proc0O3.v
from the support page and refer it.

2. Verify the behavior of desighed processor using following
assembly code
+ add $0, $6, $0 # NOP {6'h@, 5'de, 5'de, 5'de, 5'de, 6'h20}
+ addi $te, $zero, 8 # {6'h8, 5'de, 5'd8, 16'ds}
+ sw $te, 4($te) # {6'h2b,5'd8, 5'd8, 16'd4}
+ 1w $t1, 4($te) # {6'h23,5'd8, 5'd9, 16'd4}
. addi $t2, $t1, 6 # {6'h8, 5'd9, 5'd1@,16'h6}

3. Submit a report printed on A4 paper at the beginning of the
next lecture.

« The report should include a block diagram, a source code in Verilog
~@@ HDL, and obtained waveforms of your design.

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

