Fiscal Year 2019

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

2. Instruction Set Architecture

f
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

MIPS R3000 Instruction Set Architecture (ISA)

e Instruction Categories

=)

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

. Registers

Computational

Load/Store RO - R31

Jump and Branch

Floating Point

e coprocessor =

Memory Management w7

Special Lo

3 Instruction Formats: all 32 bits wide

OP rs rt rd shamt | funct R format
OP Is rt Immediate | format
OP jump target (immediate) J format

MIPS Register Convention and ABT

\

Name Register Usage Preserve on
Number call?
$zero 0 constant O (hardware) n.a.
Pat 1 reserved for assembler n.a.
$vO0 - vl 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

=)

49‘

ABI (Application Binary Interface)

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

MIPS Arithmetic Instructions x
\

e MIPS assembly language arithmetic statement
add $t0, $s1, $s2
sub $t0, $s1, $s2

= Each arithmetic instruction performs,only\one operation

= Each arithmetic instruction fits in 32 bits and specifies
exactly three operands
destination <« sourcel { op)source2

= Operand order is fixed (destination first)

= Those operands are all contained Iin the datapath’s register
G file ($t0,$s1,$s2) — indicated by $

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Machine Language - Add Instruction

« Instructions, like registers and words, are 32 bits long
e Arithmetic Instruction Format (R format):

N

A

op s

It

rd

shamt

funct

op 6-bits
rs 5-bits
rt 5-bits
rd 5-bits

shamt 5-bits
funct 6-bits

@9 {6'h0, 5'd8, 5'd9, 5'd1@, 5'de, 6'h20} for add $10, $8, $9

opcode that specifies the operation

register file address of the first source operand

reqgister file address of the second source operand

register file address of the result’s destination

shift amount (for shift instructions)
function code augmenting the opcode

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Exercise

» Compiling a C assignment Using Registers

e f=(g+h)-(C1+7]);

« The variables f, g, h, i, and j are assignhed to the registers
$s0, $s1, $s2, $s3, and $s4, respectively. What is the
compiled MIPS code?

\

MIPS Immediate Instructions

\
= Small constants are used often in typical code 3%

= Possible approaches?
= put “typical constants” in memory and load them
= create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !

addi $sp, $sp, 4 # $sp = $sp + 4

* Machine format (I format):

op s rt 16 bit immediate | format

= The constant is kept inside the instruction itself!
= Immediate format limits values to the range +2%-1 to -2%°

~<r" {6'h8, 5'do, 5'd8, 16'd3} for addi $8, %0, 3

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Instruction Level Parallelism (ILP)

\

add $8, $3, $5 (1)

. @
addi $9, $8, 1 (2)
addi $10, %5, 1 (3) @
add $11, %10, $9 (4) gg;indency /

ILP=4/3 =133

® (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Computer Memory

* Read-only memory (ROM)
« Random-access memory (RAM)

.| Read
address Read
=« Address data
Instruction |
[31:0]
. Data
Instruction | Write memory
memory data

We use 8K word memory.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Machine Language - Load Instruction

« Load/Store Instruction Format (I format):

op IS rt 16 bit offset
Memory

Oxffffffff

24,, + $s2 = $t0 ~—1— 0x120040ac
... 0001 1000 $s2 — Ox12004094
+...1001 0100 0x0000000
... 1010 1100 = 0x120040ac 0?0000000%
0x00000004

0x00000000

™

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

data

word address (hex)

\

10

Exercise
N\

» Compiling an Assignment When an Operand Is in Memory

* g = h + A[8];

» Let's assume that A is an array of 100 words and the
compiler has associated the variable g and h with the
registers $sl and $s2 as before. Let's also assume that the

starting address, or base address, of the array is in $s3.
Compile this C assignment statement.

MIPS Memory Access Instructions \3\%
\

« MIPS has two basic data transfer instructions for
accessing memory

Iw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

« The data is loaded into (Iw) or stored from (sw) a register
in the register file —a 5 bit address

« The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
of fset value

« A 16-bit field meaning access is limited to memory locations
within a region of +213 or 8,192 words (+2!° or 32,768 bytes)
of the address in the base register

* Note that the offset can be positive or negative

=)

A@‘
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Exercise

» Compiling Using Load and Store

e A[12] = h + A[8];

« Assume variable h is associated with register $s2 and base
address of the array A is in $s3. What is the MIPS
assembly code for the C assignment statement?

\

13

Instruction Level Parallelism (ILP)

\
1w $t0, 32($s3) (1)
dd $tg\\;\£\\§%@ (2) |
a , $s2,
Sw $t0, 48(%$s3) (3) <:::>
? / data
| dependency
1w $t1, 32($s4) (4)

Bo

ambiguous
data dependency

® (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

MIPS Control Flow Instructions

\
 MIPS conditional branch instructions: %ﬁ
bne $s0, $s1, Lbl # go to Lbl if $s0=$s1
beq $s0, $s1, Lbl # go to Lbl if $s0=%s1
e Ex: if (i==j) h = 1 + 7j;
bne $s0, $s1, Lbll

add $s3, $s0, $si
Lbll:

= Instruction Format (I format):

op rs rt 16 bit offset

= How is the branch destination address specified?

~ ="
\Q\ 15

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Other Control Flow Instructions

\
* MIPS also has an unconditional branch instruction or jump

Instruction:
j label # go to label

= Instruction Format (J Format):

op 26-bit address
from the low order 26 bits of the jump instruction

426

00
A
32

\ PC o

v

~ "\ ="
\Q\ 16

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

RISC - Reduced Instruction Set Computer

\
» RISC philosophy X

« fixed instruction lengths
* load-store instruction sets
 limited addressing modes
* limited operations
« RISC-I, MIPS, DEC Alpha, ARM, RISC-V, ...

~ "\ ="
@‘ 17

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

CISC - Complex Instruction Set Computer

» CISC philosophy
« | fixed instruction lengths
* |load-store instruction sets
» |limited addressing modes
« |limited operations

« DEC VAXI1], Intel 80x86, .

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

18

Single-cycle implementation of processors X
\

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

~ "\ ="
) 19

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Some building blocks of processor datapath

23

Read
address

Instruction

Instruction
memory

(31:0) [

Sign
extend

_ Read
register 1 Read |
A Read data 1
register 2
Jwrte - Pead)
register
.| Write
data Registers

We use 8K word memory.

k CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Datapath of single-cycle processor supporting ADD

IR[25:21] IR[20:16] IR[15:11] x

op rs rt rd shamt funct
Ox800 add $to, $s1, $s2 [add $8, $17, $18]

Add

Y/

Instruction [25:21] Read
,.| Fead *| register 1
PC " | address d Read | .
Instruction [20:16] Pead data 1
. i Zero
Instruction _I ' register 2 >A|_|_|
31:0 - ALL
[| | Write dgf-fg [result
Instruction Instruction register —_— i
memaory . >
1 Write
Bl 1
data Registers | | N

$17
$18

;"9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

n nu

W
|
I

21

Datapath of processor supporting ADD and ADDI

IR[25:21] IR[20:16]
op rs rt 16 bit immediate | format
ox804 addi $t1, $to, 3 [addi $9, $8, 3]

Ry

Instruction [25:21] Read
,.| Fead *| register 1
PC ™~ address d Read .
Instruction [20:16] Pead data 1
I " i Zero
Instruction _I 0 register 2 >A|_|_|
31:0 ALL
[| u Wri_te dgf-fg — result
Instruction | | |stryction [15:11] | x register i
memaory . - 4
| write d
data Registers

Instruction [15:0]

Sign
extend

$8 = 7

Instruction [5:0]

™

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Assignment 2
\
1.

Design a single-cycle processor supporting MIPS add, addi
instructions in Verilog HDL. Please download procOl.v from the
support page and refer it.

2. Verify the behavior of designhed processor using following
assembly code
+ add $0, $0, $0 # NOP {6'he, 5'de, 5'de, 5'de, 5'de, 6'h20}
+ addi $te, $zero, 3 # {6'h8, 5'de, 5'd8, 16'd3}
e addi $t1, $zero, 5 # {6'h8, 5'do, 5'd9, 16'd5}
+ add $t2, $te, $t1 # {6'he, 5'ds, 5'd9, 5'd1e, 5'de, 6'h20}

3. Submit a report printed on A4 paper at the beginning of the
next lecture.

* The report should include a block diagram, a source code in Verilog
HDL, and obtained waveforms of your design.

=)

~ ="
) 23

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Waveform of procOl

B cTKwWave - N:¥Lecture¥advance¥2018%¥wave.ved
File Edit Search Time Markers View Help

e @ 'i[}:'\ 'i!‘:'\ 'i?:'\ [l\,‘:l ELH \,1] &> | From:|o sec To:|600 ns @ Marker: 297300 ps | Cursor: 10200 ps
= 55T Signals Waves
: b 180 ns 200 ns 300 ns 408 ns 588 ns
5 - to Time
P CLK =1
. RST X =
imem = — - —
recfile ncl21:a0] = 200000880 FEEEEEEE EEELLEEE] 200080acC 000080
9 ir[21:0] = | EETSMCELEELERH: Be221820 B0232020
rs[4:0] = |ESS e
rtl4:8] = ELE]
rd[4:8] = @ 3
rrs[31:0] = |E38
rrt[31:8] =
- result[31:8] =
Type | Signals
wire CLEK
wire RST X

wire ir[31:0]

reg pc[31:0]
wire rd[4:0]
wire result[31:0]
wire rrs[31:0]
wire rri[31:0]
wire rs[4:0]

wire rt[4:0]

