Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

13. Thread Level Parallelism: Coherence and

Synchronization
&
W.arc}m\/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Key components of many-core processors

=)

A@‘

\

Main memory and caches

traffic

New issues are cache coherence

A parallel program has private data and shared data

Caches are used to reduce latency and to lower network

Proc3

Proc4

)

Caches

Caches

A 4

e
Core
« High-performance superscalar rroct (] proc
processor providing a hardware |
mechanism to support thread ; -
synchronization f S—
Main memory (DRAM)

I/0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

MIPS Direct Mapped Cache Example

* One word/block, cache size = 1K words (4KB) \3\%
Byte
31 30 1312 11 ... 210
K/ offset
it Tag +20 10 Data
1 Index
Index Valid Tag Data

0
1
2
) > ? ®

102i

1022

1023

120 32
) :@- What kind of locality are we taking advantage of?
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Cache writing policy

* Write-through

« writing is done synchronously both to the cache and to the main
memory. All stores update the main memory.

« Worite-back

 initially, writing is done only to the cache. The write to the main
memory is postponed until the modified content is about to be
replaced by another cache block.

* reduces the required network and memory bandwidth.

« Which policy is better for many-core?

System

Chip

Core Core Core Core

Procl Proc2 Proc3 Proc4

v v v v

Caches Caches Caches Caches

\ 4 A 4 A 4 A 4

Interconnection network

A t

~ Main memory (DRAM) I/0

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Cache Coherence Problem

3
* Processors see different values for shared data u after event 3 X

« With write-back caches, value written back to memory depends on
which cache flushes or writes back value when

« Processes accessing main memory may see stale (out-of-date) value
« Unacceptable for programming, and its frequent!

@\ I/O devices
_— (@)
=1
J \ 5

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Cache Coherence Problem
!
* Processors may see different values through their caches
e assuming a write-back cache

« after the value of X has been written by A, A's cache
contains the new value, but B's cache and the main memory do

hot
Memory
Cache contents Cache contents contents for
Time Event for processor A for processorB location X
()]
I Processor A reads X I]
2 Processor B reads X I | |
3 Processor A stores 0 1 1

mnto X

~ "\ ="
) 6

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Cache Coherence and enforcing coherence X
\

e Cache Coherence

 All reads by any processor must return the most recently
written value

* Writes to the same location by any two processors are seen
in the same order by all processors

» Cache coherence protocols
* Snooping (write invalidate / write update)
* Each core tracks sharing status of each block

* Directory based
« Sharing status of each block kept in one location

~ "\ ="
) ,

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Shooping coherence protocols using bus network

\
e Werite invalidate
* On write, invalidate all other copies by an invalidate broadcast

« Use bus itself to serialize
« Wprite cannot complete until bus access is obtained

Contents of Contents of Contents of

Processor activity Bus activity processor A's cache processor B's cache memory location X
0

Processor A reads X Cache miss for X () ()

Processor B reads X = Cache miss for X 0 0 (0

Processor A writesa l Invalidation for X | (0

to X

Processor B reads X Cache miss for X] I]

* Worite update
« On write, update all copies

=)

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Shooping coherence protocols using bus network

\
e Cache lines marked as invalid, shared or modified 3%
(exclusive)

* The shared state indicates that the block in the private
cache is potentially shared.

« The modified state indicates that the block has been
updated in the private cache; note that the modified state
implies that the block is exclusive.

« Only writes to shared lines need an invalidate broadcast
e After this, the line is marked as exclusive

~ "\ ="
) :

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Shooping coherence protocols using bus network

C1

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Normmal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit Processor Modified Nomal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normmal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

Shooping coherence protocols using bus network

C1

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit ~ Read data in local cache.

modified

Read miss Processor Invalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit ~ Processor Modified Nommal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normmal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Shooping coherence protocols using bus network

C1

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Normmal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit Processor Modified Nomal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Shooping coherence protocols using bus network

C1

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Normmal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit Processor Modified Nomal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere: write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Shooping coherence protocols using bus network

« A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

CPU read hit
Write miss for this block

Invalidate for

Shared this block

(read only)

CPU read
Place read miss on bus

Shared
(read only)

CPU
, read CPU
CPU write g‘zﬁ' miss) read
3 i miss
2 _“é Place read § =
=1 miss on bus = g ®
8w 38
0o |] o
A Qe g
218
Write miss = |®
for this block

Read miss

for this block Cache state transitions based
on requests from the bus

Exclusive
(read/write)

Exclusive
(readiwrite)

Cache state transitions
based on requeasts from CPU

CPU write miss

Write-back cache block
Place write miss on bus
CPU writa hit
CPU read hit

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Shooping coherence protocols using bus network x
\

» The basic coherence protocol
« MSI (Modified, Shared, Invalid) protocol

« Extensions
« MESI (Modified, Exclusive, Shared, Invalid) protocol
 MOESI (MESI + Owned) protocol

~ "\ ="
@\ 15

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Directory Protocols x
\

* Snooping coherence protocols are based on the use of bus
network.
What are the protocols for mesh topology NoC?

» Directory protocols

* A logically-central directory keeps track of where the copies
of each cache block reside. Caches consult this directory to
ensure coherence.

~ "\ ="
\Q\ 16

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Coherence influences cache miss rate

e Coherence misses
* True sharing misses
 Worite to shared block (transmission of invalidation)
e Read an invalidated block

« False sharing misses
e Read an unmodified word in an invalidated block

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

Decomposition and assignment

» Single Program Multiple Data (SPMD)
« Decomposition: there are eight tasks to compute B[i]
« Assignment: the first four tasks for processl, the last four for process?

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0; /* variable in shared memory */

Computation

void solve_pp (int pid, int ncores) {
int i, done = ©; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores - 1; /* private variable */
while (ldone) { Decomposition

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = ©0.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]); B[1] || B[2]||B[3]||B[4]||B[5]||B[6]||B[7]||BI8]

}
diff = diff + mydiff;

if (diff <TOL) done = 1; 3
if (pid==1) diff = @; Assignment

for (i=mymin; i<=mymax; i++) A[i] = B[i];

} Processl Process?2

int main() { /* solve this using two cores */
initialize shared data A and B; B[1] || B[2]]|| B[3] - - B[6]||B[7]||B[8]

create threadl and call solve pp(1, 2);
create thread2 and call solve_pp(2, 2);

;‘@‘ }

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

18

Two caches of different block sizes

Hit Tag ~I~ 20 10
1 Index
Index Valid Tag Data
0
1
2
®
1021
1022
1023
~ 20 32
One word/block

=)

A@‘

Data

Data

v

Byte
Hit offset
A 1%
20
Tag N 8 Block offset
Index
Data (4 word)
Index Valid Tag
0
1
2
>
253
254
255
~ 20
I ¥I_/
U X
I N
32

Four words/block

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

19

Orchestration

« LOCK and UNLOCK around critical section
e Set of operations we want to execute atomically
« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */ .
These operations must be executed

void solve pp (int pid, int ncores) { g

int i, done = ©; /* private variables */ GTomICG”y

int mymin = 1 + (pid * N/ncores); /* private variable */ e

int mymax = mymin + N/ncores - 1; /* private variable */ (1) load diff

while (!done) { (2) add

float mydiff = 0; (3) store diff

for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
} .
LOCK() After all cores update the diff,

SHZCEJ%H + mydiff; if statement must be executed.

BARRIER(); if (diff <TOL) done = 1;
if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = o;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

;‘@‘ }

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

20

