
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

10. Instruction Level Parallelism: Out-of-order
Execution and Multithreading

Ver. 2019-01-16aFiscal Year 2018

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch
• Issue or fire wakes up instructions and their executions begin
• In commit stage, the computed values are written back to ROB
• The last stage is called retire or graduate. The result is written back

to register file (architectural register file) using a logical register
number.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Register Read/
Dispatch

Issue Execute/
Memory Commit

Retire

In-order front-end

Out-of-order back-end

In-order retirement

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

OoO CoreFront-end

Register dataflow

• In-flight instructions are ones processing in a processor

Instruction window
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Instructions to be executed for an application

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming
8

10

11

12

Cycle 8
13

14

15

16

5

7

6

9

Issue
4

Execute
2

Commit
1

3

10 9 8 7 6 5 4 3 2 1ROB

Retire
1

RF

1
Executed insns

(3)

(4)

Data flow graph

(1)

(2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Case 1: Register dataflow from a far previous instn

• One source operand of insn I2 is from a retired instruction Ia.
• Because Ia is retired, the destination register has no renamed tag. The tag of

a source register can not be renamed at renaming stage, still having a logical
register tag $3.

• Where does the operand $3 comes from?

OoO CoreFront-end Instruction window
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Instructions to be executed

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming
8

10

11

12

Cycle 8
13

14

15

16

5

7

6

9

Issue
4

Execute
2

Commit
1

3

10 9 8 7 6 5 4 3 2 1ROB

Retire
1

RF

1 Ia
Executed insns

Ia: add $3,$0,$0
I1: sub p9,$1,$2
I2: add p10,p9,$3
I3: or p11,$4,$5
I4: and p12,p10,p11

Data dependence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Register renaming again
• A processor remembers a set of renamed logical registers.
• If $1 and $2 are not renamed for in-flight instructions, it uses $1 and $2

instead of p1 and p2.

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1
2
3
4

5‐>9
6
7
8

0
1
2
3
4
5
6
7
8
9
10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,$1,$2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Case 2: Register dataflow from ROB

• Assume that one source operand p10 of insn I5 is from I2 which is not retired.
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

• Because I2 is not retired, RF does not have the operand.
Because I2 is committed, the operand is stored in ROB.

• Where does the operand comes from?

OoO CoreFront-end Instruction window
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1
Executed insns

Data dependence

Instruction windowIF ID Renaming
8

10

13

14

Cycle 9
15

16

17

18

11

7

12

9

Issue
5

6

Execute
4

Commit
2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire
2

3

RF

Ia: add $3,$0,$0
I1: sub p9,$1,$2
I2: add p10,p9,$3
I3: or p11,$4,$5
I4: and p12,p10,p11
I5: nor p13,p10,p12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Case 3: Register dataflow from ALUs

• Assume that the other source operand p12 of insn I5 is from I4 which is not
committed. The operand is generated in the previous clock cycle.

• Because I2 is not retired, RF does not have the operand.
Because I2 is not committed, ROB does not have the operand.

• Where does the operand comes from?

OoO CoreFront-end Instruction window
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1
Executed insns

Data dependence

Instruction windowIF ID Renaming
8

10

13

14

Cycle 9
15

16

17

18

11

7

12

9

Issue
5

6

Execute
4

Commit
2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire
2

3

RF

Ia: add $3,$0,$0
I1: sub p9,$1,$2
I2: add p10,p9,$3
I3: or p11,$4,$5
I4: and p12,p10,p11
I5: nor p13,p10,p12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Reorder buffer (ROB)
• Each ROB entry has following fields

• entry valid bit, data valid bit, data, target register number, etc.
• ROB provides large physical registers for renaming
• A physical register is an item within a matching ROB entry

• physical register number is ROB entry number

32-bit Data
Index Data

Valid
Entry
Valid

0
1
2
.
.
.

49

target reg number

11 1 0 ‐ $10

I11: add p11,p3,p8 (add $10,$5,$6)

Instruction windowIF ID Renaming
8

10

11

12

Cycle 8
13

14

15

16

5

7

6

9

Issue
4

Execute
2

Commit
1

3

10 9 8 7 6 5 4 3 2 1ROB

Retire
1

RF

1 1 Computed data of I1 $3

1 1 Computed data of I3 $5
1 0 ‐ $4 RF

3

Retire

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Reservation station (RS)
• To simplify the wakeup and select logic at issue stage, each functional

unit (ALU) has own instruction window, an entry for an instruction is
called reservation station (RS).

• Each reservation station has
• valid bit, src1 tag, src1 data, src1 ready, src2 tag, src2 data, src2 ready,

destination physical register number (dst), operation, …
• The computed data with its tag is broadcasted to all RSs.

issue

(a) Central instruction window (b) instruction window using RS

issue

ALU1 ALU2

instruction window for ALU1 and ALU2 IW for ALU1 IW for ALU1

Reservation station

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Datapath of OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Memory dataflow and branches

• The update of a data cache cannot be recovered easily. So,
load and store instructions are executed in-order manner.
• About 30% (or less) of executed instructions are load and

stores.
• Even if they are executed in-order, IPC of 3 can be achieved.

• Branch instructions are executed in-order manner.
• About 20% (or less) of executed instructions are jump and

branch instructions.
• Out-or-order branch execution and aggressive miss recovery

may cause false recovery (recovery by a branch on the false
control path).

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Multithreading (1/2)

• During a branch miss recovery and access to the main memory by a cache miss,
ALUs have no jobs to do and have to be idle.

• Executing multiple independent threads (programs) will mitigate the overhead.
• They are called coarse- and fine-grained multithreaded processors having

multiple architecture states.

http://www.realworldtech.com/alpha-ev8-
smt/ http://www.realworldtech.com/alpha-ev8-smt/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Multithreading (2/2)

• Simultaneous Multithreading (SMT) can improve hardware resource
usage.

http://www.realworldtech.com/alpha-ev8-
smt/

http://www.realworldtech.com/alpha-ev8-smt/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Homework 6

1. Design a register renaming unit which renames two instructions
per cycle in Verilog HDL. Please download rename01.v and
rename02.v from the support page and refer them.

2. Please modify a module RENAME in rename02.v referring the
design which renames one instruction per cycle in rename01.v.
• The renamed instruction sequences by rename01.v and rename02.v

must be the same.
3. Submit a report printed on A4 paper

at the beginning of the next lecture.
• The report should include a block

diagram, a source code in Verilog
HDL, and obtained waveforms of
your design.

0: add $00, $00, $00 ‐> add p08, p03, p03
1: add $05, $01, $02 ‐> add p09, p03, p03
2: add $09, $05, $04 ‐> add p10, p09, p03
3: add $05, $05, $02 ‐> add p11, p09, p03
4: add $05, $06, $07 ‐> add p12, p03, p03
5: add $05, $05, $05 ‐> add p13, p12, p12
6: add $05, $05, $07 ‐> add p14, p13, p03
7: add $05, $05, $09 ‐> add p15, p14, p10
8: add $13, $11, $12 ‐> add p16, p03, p03
9: add $14, $11, $12 ‐> add p17, p03, p03

10: add $15, $11, $12 ‐> add p18, p03, p03
11: add $13, $13, $00 ‐> add p19, p16, p03
12: add $14, $14, $00 ‐> add p20, p17, p03
13: add $15, $15, $00 ‐> add p21, p18, p03
14: add $16, $14, $15 ‐> add p22, p20, p21
15: add $17, $16, $13 ‐> add p23, p22, p19
16: add $00, $00, $00 ‐> add p24, p03, p03
17: add $00, $00, $00 ‐> add p25, p03, p03

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1
2
3
4

5‐>9
6
7
8

‐>10

0
1
2
3
4
5
6
7
8
9
10

31

A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
ux

If B_src1==A_dst, use tag from free tag buffer
I0

I1

