Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

10. Instruction Level Parallelism: Out-of-order
Execution and Multithreading
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Instruction pipeline of OoO execution processor

 Allocating instructions to instruction window is called dispatch
« Issue or fire wakes up instructions and their executions begin
e Incommit stage, the computed values are written back to ROB

« The last stage is called retire or graduate. The result is written back
to register file (architectural register file) using a logical register
number.

In-order front-end

Instruction
Fetch

Instruction
Decode

Register
Renaming

Register Read/
Dispatch

=)

49‘

Out-of-order back-end

Issue

Execute/
Memory

Commit

In-order retirement

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Retire

\

Register dataflow

« In-flight instructions are ones processing in a processor

Cycle 8

Q

Data flow graph

IF ID Renaming Instruction window Issue | Execute | Commit Retire

15 13 11 8l[6]]5 4] »[2 1 1

16 14 12 10][9][7 > 3
ROB 10]9(8(7|6|5|4|3|2]1 RF

Instructions to be executed for an application Front-end Instruction window 000 Core |Executed insns
16 |15(14(13(12|11|10|9 |8 |7 |6 |5 3121
Newer instructions
SN— _—
g

=)

49‘

In-flight instructions

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Case 1: Register dataflow from a far previous instn

« One source operand of insn I2 is from a retired instruction Ia. \

* Because Iais retired, the destination register has no renamed tag. The tag of
a source register can not be renamed at renaming stage, still having a logical
register tag $3. Ta: add $3.50,90

* Where does the operand $3 comes from? I1: sub po9,$1,$2

I12: add p19,p9,$3
I3: or pl1,%$4,%5
I4: and pl2,plo,pll

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire

15 13 11 8| 6]|5 e JE 1 1
16 14 12 10][9][7 > 3

ROB 10[9]s8]7]e]5]4[3]2]1 RF

Instructions to be executed Front-end Instruction window 000 Core |Executed insns
16151413 |12|11|10|9 (8 |7 |6 | 5|4 |3 |2 |1 Ia
Newer instructions
S—]
S
In-flight instructions
~@9‘ Data dependence

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Register renaming again

* A processor remembers a set of renamed logical registers. \

e If $1and $2 are not renamed for in-flight instructions, it uses $1 and $2
instead of pl and p2.

Register map table

Cycle 1 0 5
10: sub $5,%1,%2 — 1 1
I1: add $9,%5,%4 2 2
I2: or $5,%$5,%2 3 3
I3: and $2,%9,%1 4 4
5 ------ po=>9 | | e » dst = p9
Free tag buffer |4 6 | 6t T sl = pl
I I - = - ere2 = p
13 12111 1@ 9 ““_-______,_._-_-;_‘_' o 8
9
Thead 10 I0: sub p9,%$1,$2
dst = $5
srcl = $1 —
0 31

]§$fa' src2 = $2

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Case 2: Register dataflow

« Assume that one source operand pl10 of insn I5 is from I2 which is not re‘rired.\
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

* Because I2 is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add $3,$0,%0
I1: sub p9,%$1,%$2
« Where does the operand comes from? I2: add plo,pd,$3
I13: or pl1,%$4,%5
I4: and pl2,plo,pll
I5: nor pl3,plo,pl2
Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
17 15 13 8 |[12]| 11 5] » 4 2 2
18 16 14 10][9][7 6]l P 3
ROB|12(11|10|9 |8 |4 |6 |D5|[4])3]|2 RF
Instructions to be executed Front-end Instruction window 000 Core Executed insns
18(17|116|15|14 (13 |12|11|10(9 |8 |7 |6 (B |4 |3 |2 |1
Newer instructions
S— =

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

—

In-flight instructions

Data dependence

Case 3: Register dataflow

« Assume that the other source operand p12 of insn I5 is from I4 which is not \
committed. The operand is generated in the previous clock cycle.

* Because I2 is not retired, RF does not have the operand.

Because I2 is not committed, ROB does not have the operand. 1a: add $3,%e,%e
I1: sub p9,%$1,%$2
« Where does the operand comes from? I2: add plo,po,$3
I3: or pl1,%$4,%5
I4: and pl2,plo,pll
I5: nor pl3,plo,pl2
Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
17 15 13 8 |[12][11 15 4 2 2
18 16 14 10][9][7 6]l P 3
ROB|12|11|10|9 |8 |7 |6]|5|4]3]]2 RF
Instructions to be executed Front-end Instruction window 000 Core Executed insns
1811716 (15|14 |13 |12|11({10(9 |8 |7 |6 |5 |4 |3 |2 | 1
Newer instructions
SN—]

=)

49‘

—

In-flight instructions

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data dependence

Reorder buffer (ROB)

« Each ROB entry has following fields
« entry valid bit, data valid bit, data, target register number, etc.
« ROB provides large physical registers for renaming

* A physical register is an item within a matching ROB entry
 physical register number is ROB entry number

Index Entry Data

Valid Valid 32-bit Data target reg number
0 3
1 1 1 Computed data of I1 o
2 1 %] - $4 > RF
1 1 Computed data of I3 $5 Retire
11— 1 0 $10
49
I11: add pl1,p3,p8 (add $10,%$5,%6)
Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
15 13 11 8l[6]]5 4] »[2 1 1
16 14 12 10][9][7 > 3
~@9' ROB 10[9[8]7]6[5[4[3]2]1 RF

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Reservation station (RS)

« To simplify the wakeup and select logic at issue stage, each functional

unit (ALU) has own instruction window, an entry for an instruction is
called reservation station (RS).

« Each reservation station has

™

A@‘

valid bit, srcl tag, srcl data, srcl ready, src2 tag, src2 data, src2 ready,
destination physical register number (dst), operation, ...

The computed data with its tag is broadcasted to all RSs.

instruction window for ALU1 and ALU2 IW for ALU1 IW for ALU1
~
Issue ‘1’ ‘1' Issue & & Reservation station
ALU1 ALU2
(a) Central instruction window (b) instruction window using RS

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation

For operand srcl For operand src2

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Datapath of OoO execution processor

Instruction cache

?

A 4

Branch handler

Instruction fetch

v

Instruction decode

1

Renaming

\ 4
A 4

Register file

Dispatch

Floating-point

\

Instruction flow

Branch

A

B

HEEEEEEEEEEEEEEEEEE
!

Reorder bu

Register dataflow

™

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

y

A 4

\¢Di'ra cache

Mamory dataflow

nstruction window

Reservation station (RS)

10

Memory dataflow and branches x
\

* The update of a data cache cannot be recovered easily. So,
load and store instructions are executed in-order manner.

« About 30% (or less) of executed instructions are load and
stores.

* Even if they are executed in-order, IPC of 3 can be achieved.

« Branch instructions are executed in-order manner.

« About 20% (or less) of executed instructions are jump and
branch instructions.

* Qut-or-order branch execution and aggressive miss recovery
may cause false recovery (recovery by a branch on the false
control path).

=)

A@‘
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Pollack's Rule

\

* Pollack's Rule states that microprocessor "performance 3%
increase due to microarchitecture advances is roughly
proportional o the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

i 39' WIKIPEDIA

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Multithreading (1/2)

« During a branch miss recovery and access to the main memory by a cache miss, \
ALUs have no jobs to do and have to be idle.

« Executing multiple independent threads (programs) will mitigate the overhead.

* They are called coarse- and fine-grained multithreaded processors having
multiple architecture states.

Thread 1 OS5 context switch code Thread 2

ot QolHNGEEE-BEREHAEA
Processor e tm o mme
Thread 1 Thread 2 Thread 3 Thread 1
s JaHENCEAEENWRAANE
Multlthreaded
Cache nuss Cache nss ? Cache nuss ?

e lleEl Rl HE FLEELL

A=
@\ http://www.realworldtech.com/alpha-ev8-smt/ 13

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Multithreading (2/2)

« Simultaneous Multithreading (SMT) can improve hardware resource
usage.
Thread 1 OS5 context switch code Thread 2
ot JUNEICHEE-BEREERER
processer Imtermipt, excepton, orO6 a]l :I!t.:lmfme:n’.‘eptlmT
Thread 1 Thread 2 Thread 3 Thread 1
e QNEBCERAERARNEARA
Multlthreaded
Cache niss Cache niss T Cache niss f

o =EEL] sElL A 1oL L
el [ejal el | M L LIE

(SMT)
Execution T
Units Time

@ﬁ Figure 1. Multithreaded Execution with Increasing Levels of TLP Hardware Support
C .

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH http://www.realworldtech.com/alpha-ev8-smt/ 14

From multi-core era to many-core era

Many-core Era
Massively parallel

applications
: 100
Increasing HW
Threads
Per Socket Multi-core Era
10 Scalar and

parallel applications

2003 2005 2007 2009 2011

\

Figura 1: Curmrent and expected eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

k CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Homework 6

1. Design a register renaming unit which renames two instructions

per cycle in Verilog HDL. Please download renameQO1l.v and
rename02.v from the support page and refer them.

2. Please modify a module RENAME in rename02.v referring the
designh which renames one instruction per cycle in renameOl.v.

* The renamed instruction sequences by renameOl.v and rename02.v

must be the same.

3. Submit a report printed on A4 paper
at the beginning of the next lecture. -

« The report should include a block °
diagram, a source code in Verilog 5

HDL, and obtained waveforms of to:

your design. 2

=)

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

: add %00,
: add %05,
: add $09,
: add %05,
: add %05,
: add %05,
: add %05,
: add $05,
add $13,
: add $14,
add $15,
: add $13,
add $14,
: add $15,
add $16,
add $17,
add %00,
add %00,

$o0,
o1,
$05,
$05,
$06,
$05,
$05,
$05,
$11,
$11,
$11,
$13,
$14,
$15,
$14,
$16,
$00,
$00,

$00 -

$02

$04 -

$02
$07
$05
$07

$09 -

$12
$12
$12
$00

$00 -

$00
$15
$13
$00

$00 -

I R B | I R R | I N | 1
YV V V V VV VV V V V YV V WV WV VV.YV

add pes,
add pe9,
add pie,
add pi1,
add pi2,
add p13,
add pi4,
add p15,
add p1le,
add p17,
add p18,
add p19,
add p20,
add p21,
add p22,
add p23,
add p24,
add p25,

pe3,
pe3,
peo,
peo,
pe3,
p12,
p13,
pl4,
pe3,
pe3,
pe3,
pls6,
p17,
p18,
p2e,
p22,
pe3,
pe3,

po3
po3
po3
po3
po3
p12
po3
ploO
po3
po3
po3
po3
po3
po3
p21
p19
po3
po3

\

16

Renaming two instructions per cycle for superscalar

e Renaming instruction I0 and I1

Cycle

10:

1

I1:
12:
I13:

sub $5,%1,%2
add $9,%5,%4
or $5,%5,%2
and $2,9%9, %1

Free tag buffer

Register map table

13(12{11|10| 9 ==

=)

49‘

I0 A dst =
A srcl =
A src2 =

T1 B_dst =
B srcl =
B src2

9 (%]
— 1 1
3 3 e » A dst = p9
"4 4 T, Q—SPC; = p;
................. > Src =
b 550 P
6 6
..................... 7 7 BN B dst — pl@
............... o P e —— B_srcl = p9
“§F 2510 B_src2 = p4
If B_srcl==A_dst, use tag from free tag buffer
10
I0: sub p9,pl,p2
I1: add plo,p9,ps
31

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

