Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

9. Instruction Level Parallelism: Exploiting ILP
Using Multiple Issue and Speculation
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Hardware register renaming
\

* Logical registers (architectural registers) which are ones defined by
ISA

- $0, %1, .. $31
 Physical registers
« Assuming plenty of registers are available, pO, p1, p2, ...

* A processor renames (converts) each logical register to a unique
physical register dynamically

Typical instruction pipeline of scalar processor

IF ID EX MEM WB

Typical instruction pipeline of high-performance superscalar processor

IF ID Renaming | Dispatch Issue | Execute | Commit Retire

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Out-of-order execution X
\

 Inin-order execution model, all instructions

executed in the order that they appear. This @
can lead to unnecessary stalls.
* Instruction (3) stalls waiting for insn (2) to go
first, even though it does not have a data @ @

dependence.

 Using register renaming to eliminate output
dependence and antidependence, just having Data flow graph
true data dependence

* With out-of-order execution, insn (3) is allowed
to executed before the insn (2)

« Scoreboarding (CDC6600 in 1964)

« Tomasulo algorithm (IBM System/360 Model 91

~@@' in 1967)

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

The key idea for OoO execution (1/3)

* In-order front-end, OoO execution core, in-order retirement using instruction

window and reorder buffer (ROB)

Cycle 2

Cycle 3

Cycle 4

Cycle 5

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

IF

4

ID

1

2

Renaming

In-order front-end

IF ID Renaming
5 1
6 4 2

IF ID Renaming
7 5 3 1
8 6 4 2

IF ID Renaming Instruction window
9 7 5 3|1
10 6 4|2

I1:
I12:
I3:
14:

\

sub p9,pl,p2
add plo,p9,p3
or pll,p4,p5
and pl2,plo,pll

)

plo

Data flow graph

The key idea for OoO execution (2/3)

* In-order front-end, OoO execution core, in-order retirement using instruction \
window and reorder buffer (ROB)

Cycle 5 IF ID Renaming Instruction window I1: sub p9,pl,p2
2 ! > 31U I2: add pl10,p9,p3
10 8 6 4112 I3: or pll,p4,p5
I4: and pl2,plo,pll
Cycle 6 IF ID Renaming Instruction window Issue
11 9 7 6|5 1 @
12 10 8 4 || 2 3 9
We assume that Il can be issued at cycle 6 by dependence.
Cycle 7 IF ID Renaming Instruction window | Issue | Execute @
13 11 9 8l 6|5 2 > 1) p10
14 12 10 47 D [3
Data flow graph
Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit
15 13 1 8 |[6][5 4]l »[2 1
16 14 12 10][9][7 > 3

=)

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

The key idea for OoO execution (3/3)

* In-order front-end, OoO execution core, in-order retirement using instruction

window and reorder buffer (ROB)

Cycle 6

=)

IF ID Renaming Instruction window Issue
11 9 7 6|5 1
12 1 4 112

0 8 3 Head of the FIFO
ROB 6|5/4]3[2]1]

IF ID Renaming Instruction window | Issue | Execute
13 1 9 8 |[6][5 2] » 1
14 12 10 4][7 > [3

ROB 8]7]6|5[4]3][2]1]

IF ID Renaming Instruction window | Issue | Execute | Commit Retire
15 13 11 8|l 6][5 4] »[2 1 1
16 14 12 0][9][7 > 3

ROB 10{9(8|7|6|5[4|3|2]1 RF

IF ID Renaming Instruction window | Issue | Execute | Commit Retire
17 15 13 8 |[12] 1 5] »[4 2 2
18 16 14 10][9][7 6]l P 3

ROB[12|11({10[{9 |8 |7 |6 |5 |43 |2 RF

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

6

Architectural register file

Instruction pipeline of OoO execution processor

 Allocating instructions to instruction window is called dispatch
« Issue or fire wakes up instructions and their executions begin
e Incommit stage, the computed values are written back to ROB

* The last stage is called retire or graduate. The result is written back

to register file (architectural register file) using a logical register
number.

In-order front-end

Instruction
Fetch

Instruction
Decode

Register
Renaming

Register Read/
Dispatch

=)

A@‘

Out-of-order back-end

Issue

Execute/
Memory

Commit

In-order retirement

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Retire

\

Exercise: Qo0 execution

* Draw the cycle by cycle processing behavior of these 12
instructions

* wakeup
« select

0N
OO0

@/’

\

Cycle 1

Cycle 6

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 2

|ROB

Cycle 7

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 3

|ROB

Cycle 8

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

[
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

UL

|ROB

Cycle 4

|ROB

Cycle 9

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

UL

|ROB

Cycle 5

|ROB

Cycle 10

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

[]
[]
[|

|ROB

=S

|ROB

Prediction miss and recovery

* Assume that instruction 3 is a miss predicted branch and its target insn is 20
* Register file (and PC) has the architecture state after insn 3 is executed
* When insn 3 is retired, recover by flushing all instructions and restart

Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
17 15 13 8 |[12][11 5] »[4 2 2
18 16 14 0][9][7 6] » [3]
ROB|12|11|10|9 |8 |7 |6 |5 3|2 RF
Cycle 10 IF ID Renaming Instruction window Issue | Execute | Commit Retire
ROB RF
Recovery by flushing instructions on the wrong path (may takes several cycles)
Cycle 11 IF ID Renaming Instruction window Issue | Execute | Commit Retire
20 >
21 >
ROB RF

;‘@‘

Restart by fetching instructions using the correct PC
I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

MIPS R3000 Instruction Set Architecture (ISA)

e Instruction Categories

=)

49‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

. Registers

Computational

Load/Store RO - R31

Jump and Branch

Floating Point

e coprocessor =

Memory Management w7

Special Lo

3 Instruction Formats: all 32 bits wide

OP rs rt rd shamt | funct R format
OP Is rt Immediate | format
OP jump target (immediate) J format

11

Branch prediction miss and aggressive recovery

« Instruction 3 is a miss predicted branch and its target insn is 20

* Register file (and PC) has the architecture state after insn 3 is executed
 Wheninsn 3 is executed, recover by flushing instructions after insn 3 and restart

Cycle 7

\

IF ID Renaming Instruction window Issue | Execute
13 11 9 8ll6]]5 2]l p [t
14 12 10 4][7 > B
ROB 817]6]5 3]2]1]}
IF ID Renaming Instruction window Issue | Execute | Commit Retire
> [2 1 1
> 3
ROB 312]1 RF

Recovery by flushing instructions on the wrong path (may takes several cycles)

)

\

IF ID Renaming Instruction window Issue | Execute | Commit Retire
20 > 2 2
21 > 3

ROB 3|2 RF

=
“@ Restart by fetching instructions using the correct PC
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Aside: What is a window?

« A window is a space in the wall of a building or in the side of a vehicle,

\

which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application

Instruction window

Instruction large window

Instruction window

Instruction window

™

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Cycle 1 Cycle 6

Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire

I [] [] [] [| L[J{10][11] [6]

L L L L2 [] [] [] [| L [J[12][9] []
L[[[[l2]1]roB [12]11]10/9|8]7[6[5[4[3]| | |ROB

Cycle 2 Cycle 7

Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire

L L J[4][3] [] [] [| L [J{1oj[| [9] L6]

L L I Jl2] [] [] [] [] L L J2f{ | [] [6]
L [[[[[4[3]2]1]roB [12]11]10/9|8]7[6[5] | | | |ROB

Cycle 3 Cycle 8

Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire

L L _J[e][3] [] [] . [9]

L L I J[5] [] [] [] L L a2 | [] []
L [[[| | [e[5[4[3]|2]1]roOB [12j1j0{9f8|7] [| | [| |RoB

Cycle 4 Cycle 9

Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire

L L J[e][7] L LI L] [9] [9]

L L I (8] [] [] . L] »] []
L [[| |8]7[6[5[4[3]|2]1]rOB 12j11j10{9] | [[[[[[|RoB

Cycle 5 Cycle 10

Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire

L [J[10][7] L6] L LI L] []

Y []] [] [] []
X [10[9[8[7|6]5[4[3][2] |ROB (12j11j1of [| [[[[[| |roB

=S

14

