Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

5. Instruction Level Parallelism: Concepts and

Challenges
y
Www.arctm\—/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1



Pipeline registers

e add %0, %0, $0 # NOP, $0 <=0 + ©
e add $1, $1, $1 # $1 <= 22 + 22
e add $2, $2, $2 # $2 <= 33 + 33
e add %$0, %0, %0 # NOP
e add $0, $0, $0 # NOP

e add %0, $0, $0 # NOP
assuming initial values of r[1]=22 and r[2]=33

Add -
| .
1
4 | 1
I 1
1
1 1
I 1
1 1
| 1
1
| Instruction [25:21] Read |
Read | register 1
pc address ' d Read
Instruction [20:18] Read data 1
: Zero
Instruction M register 2 |
[31:0] Wiite Read [— ALU ) 1)
Instruction i 7 ; data 2 | result
Instruction register
memory >
T Write
! | "
data Registers | | g

L= IF ID
~@\

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Four stage pipelined processor supporting ADD, which uses wrong RD
and does not adopt data forwarding (proc05.v)

If_IR

IfId

IfId_IR

If stage

4

pcC

—>1 pc imem

add %0, %0, %0
add $1, $1, $1
add $2, $2, $2
add $3, $3, $3
add $4, $4, %4

r[1]=22, r[2]=33, r[3]=44, and r[4]=55

ASTEE,‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Id_RS

Id stage

Id_RT

Id_RD
>

91T483u

Id_RRS

IdEx

IdEX_RRS

Ex stage

Id_RRT

IdEX_RRT

IREIRE

ExWb

v

Wb stage \\\\\

ExWb_RSLT




Waveform of ProcOb

 Please confirm that the values in regfile are wrong

Signals Waves
[

Time
CLK
RST_X
pcl31:0] 0090008090 90000010 T 59500015 539505 1C
If TR[31:0] xx+ 000ABA20
Ifid TR[31:0] EEEEEETEE
Id_Rs[4:0] xx B0
Id_RT[4:0]
Id_RD[4:8]

Id_RR5[31:0]
Id_RRT[31:0]
IdEx_RRS[31:8]
IdEx_RRT[31:8]

ExWb_RSLT[31:0]

ox00 add $0, $0, $0 IF ID EX WB

ox04 add $1, $1, $1 IF ID EX WB

ox08 add $2, $2, $2 IF ID EX WB

ox0C add $3, $3, $3 IF ID EX WB

ox10 add $4, $4, %4 IF ID EX WB

r[1]=22, r[2]=33, r[3]=44, and r[4]=55

=)

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Waveform of ProcO5 towards ProcQ06

10000000C 100000016
100631820 100842020
1004210260 00631820
102 A
102 . . . .
* : | 32bitx32 2R/1W General Purpoze Rezizters (Begister File)
02 3 B o e o o o e e o o o o o o o o o o o o e
- : (CLE. REGNUMO, REGNUM1, REGNUMZ, DINO, WEO, DOUTO, DOUTL);
input wire :

CLE,
input  wire [4:0] EEGNUMO, EEGHUM1, REGNUNZ;
input wire [31:0] DIND;

input wire

WED;
output wire [31:0] DOUTO, DOOTL;

rez [31:0] r[0:31]:
#15 DOUTO = (REGNUMO==0) ¢ 0 : r[REGNUMO];
#15 DOUTL = (REGNUM1==0) % 0 : r[REGNUM1]:
e CLE) (WEDY r[EEGHUMZ] <= #10 DINOD;
/ alwayz @(pozedze CLE) ifCWED) r[REGHNUNZ] <= #10 DINO;

P e e e e e e

WB using negedge CLK to update regfile
_ EX WB

I~ = 9‘
@\ ™ FY .

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Four stage pipelined processor supporting ADD, which does not adopt
data forwarding (proc06.v, Homework 4)

Ex stage Wb stage x
IfId IdEx ExWb

If stage Id stage
4
pc
If IR || IfId_IR
% C . - .
P Hmem using negedge CLK to update
Id_RS ~_
—
Id_RRS IdEX_RRS m
Id_RT 3 |
] o
ExWb_RD | - ExWb_RSLT
>l ° +
Id_RRT IdEX_RRT
Id RD IdEx_RD ExWb_RD

;"9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6




Single-cycle and pipelined processors

Program
execution
order

(in instructions)

‘ 200 400 600 800 1000 1200 1400 1600 1800
Time T T T T T T T T ™

Instruction Data
w $1, 100(30) fetch access Reg

= ™ | Instruction Data
lw $2, 200($0) 800 ps s Data | peg

- - .
w $3, 300($0) 800 ps |HSE;I£J§;E.]IDFI
T —iff——— e
800 ps

Program
execution —. 200 400 600 800 1000 1200 1400
order Time ! ! l n | I I >
(in instructions)
w $1,100($0) | | | Reg |

Instruction

- P
lw $2, 200($0) 200 ps| feten

-— -
lw $3, 300($0) 200 ps | "t aomees |Re0
Y - — —




Scalar and Superscalar processors

« Scalar processor can execute at most one single instruction per clock \
cycle using one ALU.

« TIPC (Executed Instructions Per Cycle) is less than 1.

« Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

« TIPC (Executed Instructions Per Cycle) can be more than 1.
 using n pipelines is called n-way superscalar

200 400 600 800 1000 1200 1400 Time (in clock cycles)
T T T T T T T > CCAH1 cc2 CC3 CC4 CC5 CCB CC1 cc2 CC3
- Instructio
'“Sgt‘ccr:"’” Res| A 323;:5 Res n Ins:r&::ion nstructio
200 p || [reo| AW P2 lreg
T200ps || [Res AR 02, |re

200ps 200ps 200 ps 200 ps 200 ps

Write back

Write back

(a) pipeline diagram of scalar processor
) jgp‘ (b) pipeline diagram of 2-way superscalar processor

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH




Exercise: datapath of a 2-way superscalar

» Datapath of a 2-way superscalar processor supporting ADD
which does not adopt data forwarding

\



Homework 5

1. Design a four stage pipelined 2-way superscalar processor supporting
MIPS add instruction in Verilog HDL. Please download procO6.v from
the support page and refer it.

2. Verify the behavior of designed processor using following assembly

code

assuming initial values of r[1]=22, r[2]=33, r[3]=44, and r[4]=55

add
add
add
add
add
add

3. Submit a report printed on A4 paper at the beginning of the next

$0,
$0,
$1,
$2,
$3,
$4,

lecture.

« The report should include a block diagram, a source code in Verilog
HDL, and obtained waveforms of your design.

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

$0,
$0,
$1,
$2,
$3,
$4,

$0
$0
$1
$2
$3
$4

H H H OH H

H

\

10



Exploiting Instruction Level parallelism (ILP) X
\

A superscalar processor has to handle some flows
efficiently to exploit ILP
« Control flow

« To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

* The main obstacles are branch instruction (BNE, BEQ)
e Another obstacle is instruction cache

* Register data flow
« Memory data flow

~ "\ ="
\Q\ 11

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in execution stage of the
branch.

« The conservative approach of stalling instruction fetch until the branch

direction is determined.

7.

2-way superscalar processor executing instruction sequence with a branch

Note that because of a branch instruction, only one instruction is executed in cc4 and no
- instructions are executed in CC6 and CC7. This reduces the IPS.

A@‘

o0k W=

add
add
bne
add
add
add
add

ccl cc2 cc3 cc4| cc5 cc6| cc7 cc8 cc9 cclo
IF | ID | EX | MEM| WB
IF | ID | EX | MEM| WB
IF | ID | EX |MEM| WB
Control dependencyx IF | ID | EX [MEM| WB
IF | ID | EX |MEM| WB
IF | ID | EX | MEM| WB
IF | ID | EX |MEM| WB

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH




Deeper pipeline

\

» In conservative approach, IPC degradation will be
significant by deeper pipeline

ccl cc2 «cc3 cc4d cc5 cc6| cc7 cc8 cc9 «cclo|ccll ccl2 ccl3 ccl4

1. add IF | ID1 | ID2 | ID3 | EX | MEM| WB

2  add IF | ID1 | ID2 | ID3 | EX | MEM| WB

3. bne IF | ID1 | ID2 | ID3 | EX |MEM] WB

4. add Control dependency\ IF | ID1 | ID2 | ID3 | EX | MEM| WB

5. add IF | ID1 | ID2 | ID3 | EX | MEM]| WB

6. add IF | ID1 | ID2 | ID3 | EX |MEM| WB
7. add IF | ID1 | ID2 | ID3 | EX |MEM| WB

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

~ "\ ="
) 13

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Branch predictor x
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

« Let's guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

~ "\ ="
<4 14

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Prediction Accuracy of weather forecasts \3\%
\

ﬁ CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15



Sample program: vector add

##tdefine VSIZE 4

void vadd(long *A, long *B, long *C){

for(i=0; i<VSIZE; i++)

C[i] += (A[i] + B[i]);

Executed instruction sequence

B3 —

B3 —»

31{ =0 ]

v

BZ/

o

*C=*C+ (*A +*B)

++
A++
B++

C++
i<4

/

False

True

B3 { return ]

B3} —»

Control flow graph

e

/ Not Taken (0) / Not Taken (O)/Nof Taken (O)/‘Taken (1)

B1

B2

B2

B2

B2

B3

\

Taken (1)

Taken (1)

Taken (1)

;‘@‘
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Not Taken (0)

16



Simple branch predictor: Branch Always x
\

* How to predict
* It always predictsas 1.
* How to update
* Nothing cause it does not use any memory.

~ "\ ="
@‘ 17

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Simple branch predictor: 2bit counter

» Tt uses two bit register or a counter.

* Hot to predict

e Tt predicts as 1if the MSB of the register is one, otherwise predicts as O.

* How to update the register

e If the branch outcome is taken and the value is not 3, then increment the

register.

« TIf the branch outcome is untaken and the value is not O, then decrement

the register.

2 bit
—

l

Prediction

=)

\

Taken
Taken
Strongly N\NT__ Weakly
Taken (11) Untaken Taken (10)

s

~
Taken -~ Untaken

-

“ o7 ken
Weakly et Strongly
Untaken (01) / = = = *» \_Untaken (00 \
Untaken S

~ -
Untaken

49‘
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

18



Sample program: vector add with two branches

31[ =0 }

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {

¥
¥

Executed instruction sequence

;‘@‘

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

if(A[i]<@) error_routine();

C[i] += (A[i] + B[i]);

BE { }
Error check

v
BZ[ }
*C:*C+(*A+*B)

83[

False

return }

Control flow graph

True

/fes — /fes — /fes — /fez
B1 BE| |B2 BE| |B2 BE| |B2 BE| |B2 B3
o 1 o 1 o 1 0 0

\

19



Simple branch predictor: bimodal

* Program has many branch instructions. The behavior may depend on

each branch. Use one counter for one branch instruction

* How to predict

» Select one counter using PC, then it predicts 1 if the MSB of the

register is one, otherwise predicts O.

* How to update

« Select one counter using PC, then update the counter same manner

as 2bit counter.

Pattern History Table (PHT)

Program
Counter

2" entry

Prediction

—>

I
G 2 bit

A@‘

~N
A 4

Taken
STroneg
Taken (11)

Taken

»”
Weakly —
Untaken (01 Urita ;

Taken

Un‘raken

-
-

Taken

Weakly
Taken (10)

Un‘raken

Strongly
Untaken (00

<

Untaken ~

/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

20



MIPS Direct Mapped Cache Example

* One word/block, cache size = 1K words (4KB)

3130 1312 11 210 Byte
K/ offset
Hit Tag +20 10
1 Index
Index Valid Tag Data

0
1
2
) > ? ®

1021

1022

1023

120 32
) :g- What kind of locality are we taking advantage of?

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data

21



Prediction accuracy of simple branch predictors

« The accuracy of branch always is about 50%. \
« The accuracy of bimodal predictor of 4KB memory is about 88%.
100
%0 8KB hardware budget O Branch Always
O 2bit counter
80 o M Bimodal
2 70 | - T
> _ )
5 60 |
o
2 50 | T F 1
RS
46 | —
2 40 : — i
GLJ - -
g 30 niEEe
2
20
o 1l M lala
0 L || || || || L || || L L || _L_L_ _L_]\ |
TYe Y Py yYy R eI IYR o
Lt bt EEEEEEEES 20 o
w unu unun un un <

=)

. 49' Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22



