

2012年 後学期

計算機アーキテクチャ 第二 (O)

マルチコアプロセッサ

1

マルチコア(2個～数10個)からメニーコアへ

- デスクトップPC等に搭載される高性能・汎用プロセッサのアーキテクチャは、今後、数百個のコアを搭載するメニーコアプロセッサの時代へ

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

2

メニーコアアーキテクチャにおける重要な選択肢

- コアのアーキテクチャ
 - スーパースカラ、アウトオブオーダ実行？
 - 2-way のインオーダ・スーパースカラ程度の複雑さ
- ネットワークアーキテクチャ
 - どのようにコアやメモリを接続するのか？
- メモリアーキテクチャ
 - 共有メモリ(すべてのコアが同じメモリ空間)、
 - 分散メモリ(異なるメモリ空間を持つ)？
 - キヤッシュ、一貫性管理

Many-core processor (メニーコアプロセッサ)

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

3

ネットワークトポロジー

4

Interconnection Network

(a) Bus

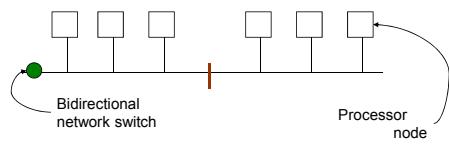
(b) Crossbar

(c) Grid, mesh

(d) Torus

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

5

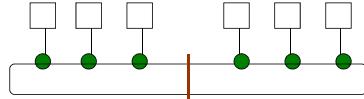

Interconnection Network Performance Metrics

- Network cost**
 - number of switches
 - number of links on a switch to connect to the network (plus one link to connect to the processor)
 - width in bits per link, length of link
- Network bandwidth (NB)**
 - represents the **best** case
 - bandwidth of each link * number of links
- Bisection bandwidth (BB)** バイセクションバンド幅
 - represents the **worst** case
 - divide the machine in two parts, each with half the nodes and sum the bandwidth of the links that cross the dividing line

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

6

Bus Network

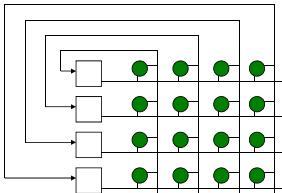


- N processors, 1 switch (●), 1 link (the bus)
- Only 1 simultaneous transfer at a time
 - NB (best case) = link (bus) bandwidth * 1
 - BB (worst case) = link (bus) bandwidth * 1

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

7

Ring Network

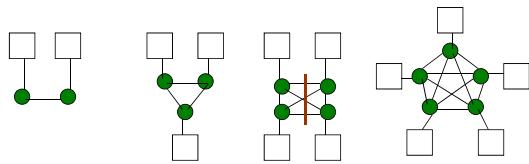


- N processors, N switches, 2 links/switch, N links
- N simultaneous transfers
 - NB (best case) = link bandwidth * N
 - BB (worst case) = link bandwidth * 2
- If a link is as fast as a bus, the ring is only twice as fast as a bus in the worst case, but is N times faster in the best case

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

8

Crossbar (Xbar) Network

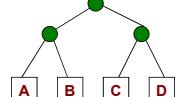


- N processors, N^2 switches (unidirectional), 2 links/switch, N^2 links
- N simultaneous transfers
 - NB = link bandwidth * N
 - BB = link bandwidth * $N/2$

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

9

Fully Connected Network


- N processors, N switches, $N-1$ links/switch, $(N*(N-1))/2$ links
- N simultaneous transfers
 - NB (best case) = link bandwidth * $(N*(N-1))/2$
 - BB (worst case) = link bandwidth * $(N/2)^2$

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

10

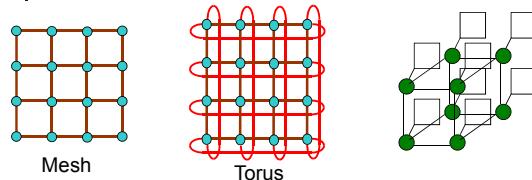
Fat Tree

- Trees are good structures.
- People in CS (Computer Science) use them all the time.
- Suppose we wanted to make a tree network.

- Any time A wants to send to C, it ties up the upper links, so that B can't send to D.
 - The bisection bandwidth on a tree is horrible - 1 link, at all times
- The solution is to **'thicken'** the upper links.

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

11


Fat Tree

- N processors, $\log(N-1)*\log N$ switches, 2 up + 4 down = 6 links/switch, $N*\log N$ links
- N simultaneous transfers
 - NB = link bandwidth * $N \log N$
 - BB = link bandwidth * 4

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

12

2D and 3D Mesh/Torus Network

- N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D torus) links/switch, $4N/2$ links or $6N/2$ links
- N simultaneous transfers
 - NB = link bandwidth * $4N$ or link bandwidth * $6N$
 - BB = link bandwidth * $2 N^{1/2}$ or link bandwidth * $2 N^{2/3}$

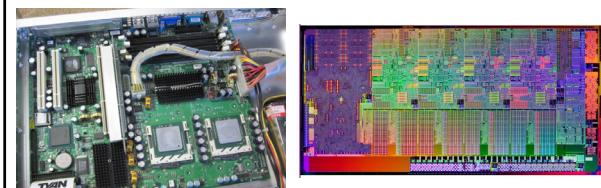
13

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

Interconnection Network Comparison

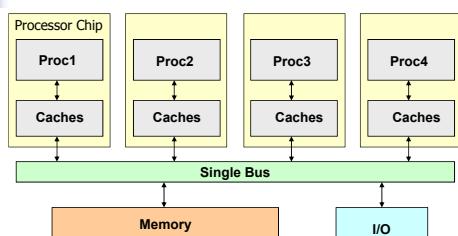
- For a **64** processor system

	Bus	Ring	2D Torus	6-cube	Fully connected
Network bandwidth	1	64	256	192	2016
Bisection bandwidth	1	2	16	32	1024
Total # of switches	1	64	64	64	64
Links per switch		2+1	4+1	$6+7$	63+1
Total # of links (bidi)	1	64+64	128+64	$192+64$	2016+64


Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

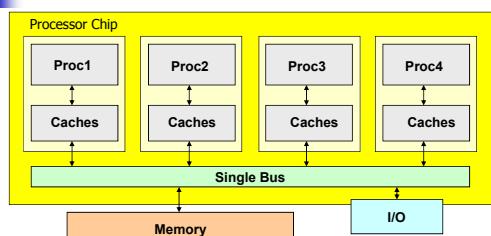
14

メモリ構成とネットワークアーキテクチャ


15

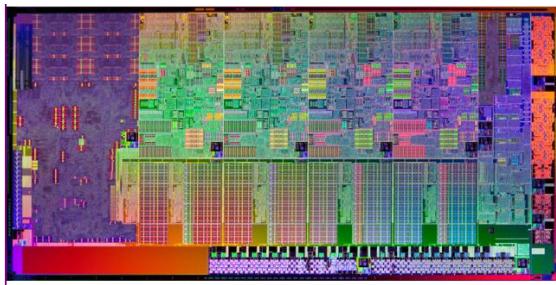
マルチプロセッサとマルチコア

16


単一バス結合のマルチプロセッサ, 共有メモリ

- Caches are used to reduce **latency** and to lower **bus traffic**
- Must provide hardware to ensure that caches and memory are consistent (**cache coherency**)
- Must provide a hardware mechanism to support **process synchronization**

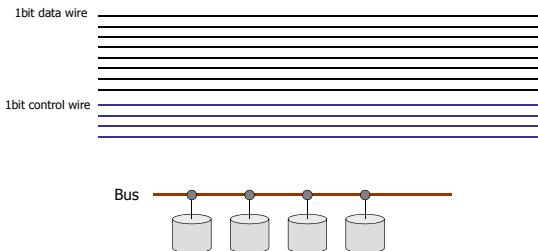
17


単一バス結合のマルチコア, 共有メモリ

- Caches are used to reduce **latency** and to lower **bus traffic**
- Must provide hardware to ensure that caches and memory are consistent (**cache coherency**)
- Must provide a hardware mechanism to support **process synchronization**

18

マルチコアプロセッサの例, Intel Sandy Bridge

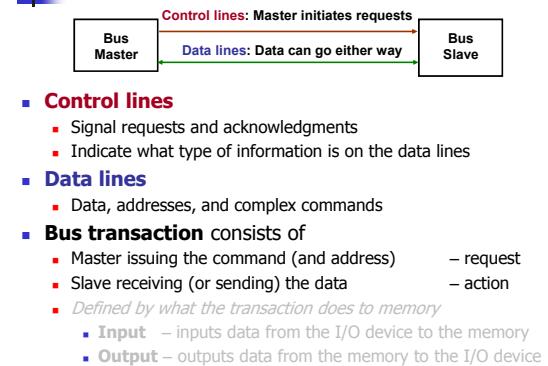


Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

19

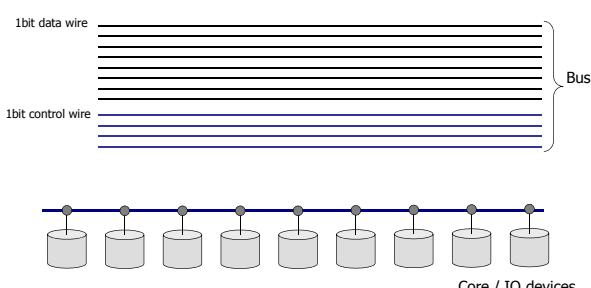
Bus

- A **bus** (バス) is a **shared** communication link


20

Bus, I/O System Interconnect

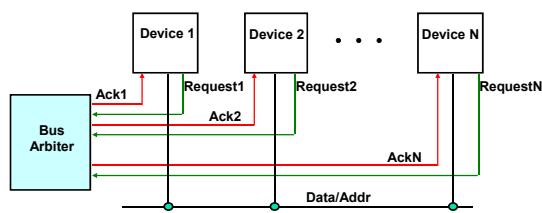
- A **bus** (バス) is a shared communication link (a single set of wires used to connect multiple subsystems)
 - Advantages**
 - Low cost** – a single set of wires is shared in multiple ways
 - Versatile** (多目的) – new devices can be added easily and can be moved between computer systems that use the same **bus standard**
 - Disadvantages**
 - Creates a communication bottleneck – **bus bandwidth** limits the maximum **I/O throughput**
- The maximum bus speed is largely limited by
 - The **length** of the bus
 - The **number** of devices on the bus


21

Bus Characteristics

22

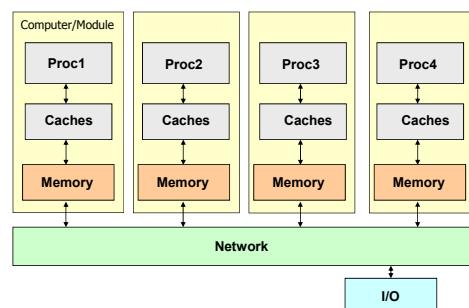
The Need for Bus Arbitration (調停)


23

The Need for Bus Arbitration (調停)

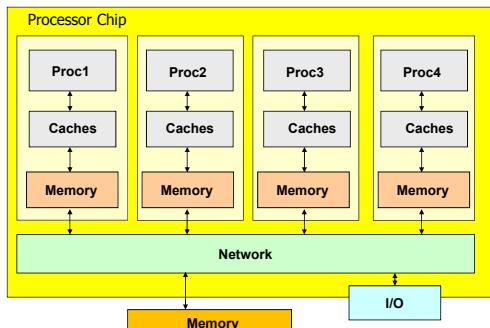
- Multiple core / devices may need to use the bus **at the same time**
- Bus arbitration schemes** usually try to balance:
 - Bus priority** – the highest priority device should be serviced first
 - Fairness** – even the lowest priority device should never be completely locked out from the bus
- Bus arbitration schemes** can be divided into four classes
 - Daisy chain arbitration
 - Centralized, parallel arbitration
 - Distributed arbitration by collision detection
 - device uses the bus when it's not busy and if a collision happens (because some other device also decides to use the bus) then the device tries again later (Ethernet)
 - Distributed arbitration by self-selection

24


Centralized Parallel Arbitration (集中並列方式)

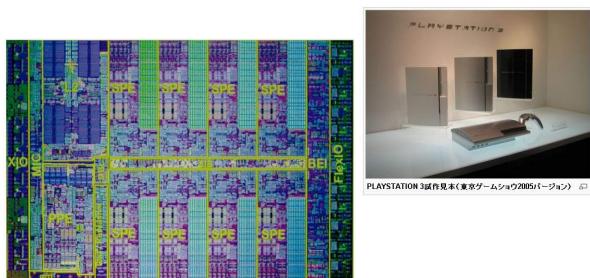
- Advantages: flexible, can assure fairness
- Disadvantages: more complicated arbiter hardware
- Used in essentially all processor-memory buses and in high-speed I/O buses

25


ネットワーク結合の並列計算機/クラスタ, 分散メモリ

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

26


ネットワーク結合のマルチコアプロセッサ, 分散メモリ

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

27

Cell Broadband Engine & PS3

28

Cell BE Element Interconnect Bus

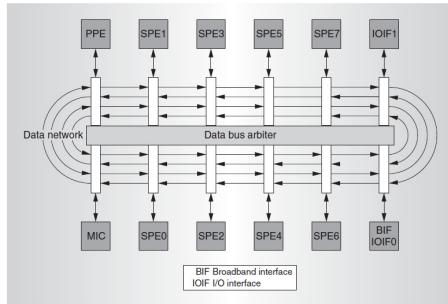
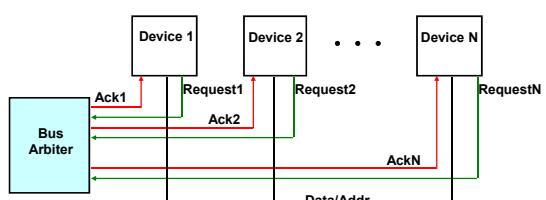
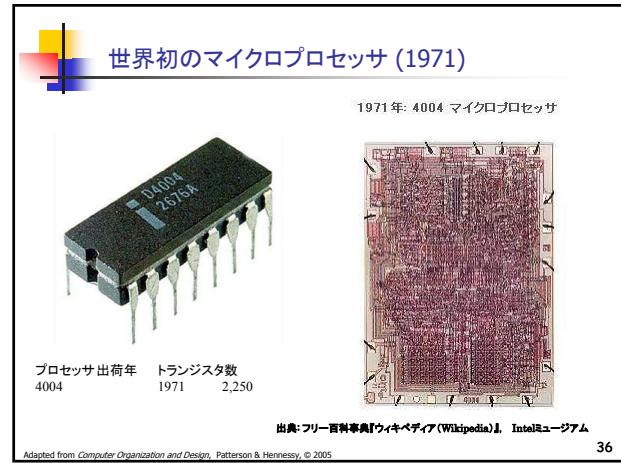
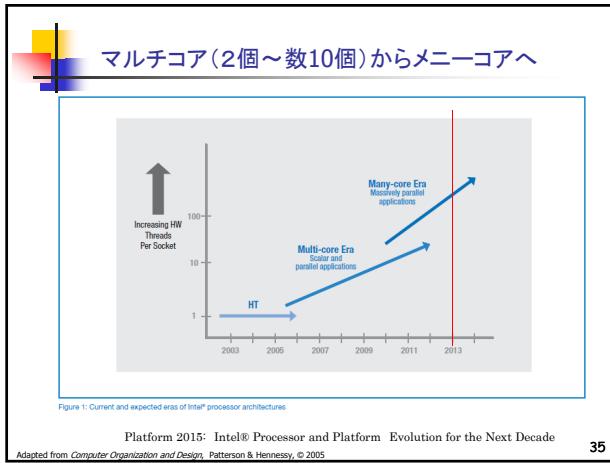
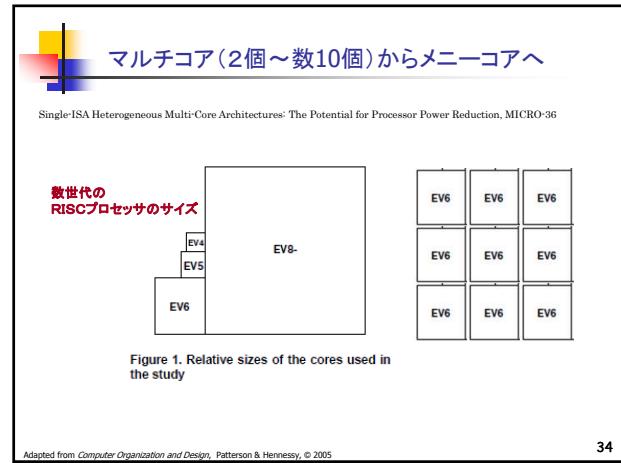
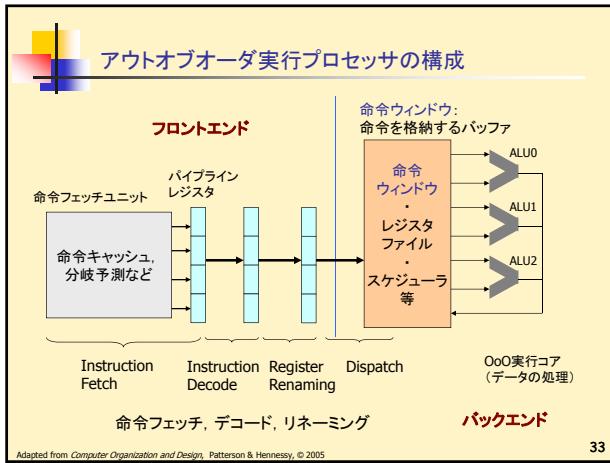
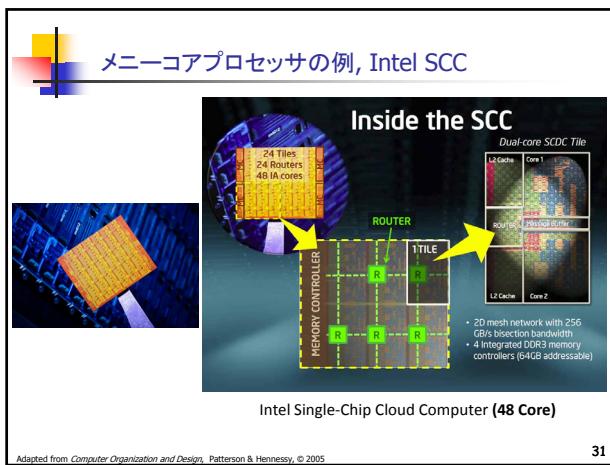



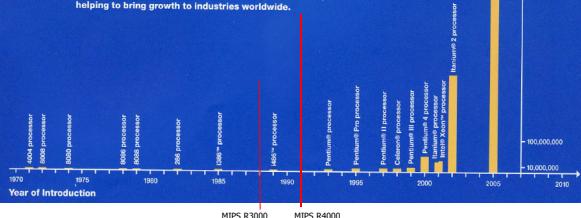
Figure 2. Element interconnect bus (EIIB).

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed






29

Centralized Parallel Arbitration (集中並列方式)

- Advantages: flexible, can assure fairness
- Disadvantages: more complicated arbiter hardware
- Used in essentially all processor-memory buses and in high-speed I/O buses


30

Moore's Law

Moore's Law

Moore's Law states that the transistor density on integrated circuits doubles about every two years. Moore's Law has been amazingly accurate over time. In 1971, the Intel 4004 processor had 2,300 transistors. By 2005, the Intel 'Penryn' processor held more than 1 billion transistors. Intel continues to drive Moore's Law, increasing functionality and performance, and helping to bring growth to industries worldwide.

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

37

The free lunch is over !

"The free lunch is over!" [Sutter, 2005]

- With multi-core processors, programs written in sequential model will no longer surf on the wave of this generation of processors
 - Even though they get a little bit faster, they won't enjoy the whole improvements
- To surf in the new wave, programs need to be well-written parallel
 - Remember: Not all problems can be parallelized (regular parallelism)
- "programming languages and systems will increasingly be forced to deal well with concurrency"
 - Java has included support for concurrency since its beginning, but...
 - Java 6.0 includes as part of the release the java.concurrent API, a tentative to improve the support to write concurrent programs
 - ISO C++ does not have support to write multithread systems
 - Although there are non-standard and non-portable alternatives such as Pthreads and OpenMP
- Fine-grained control constructs (e.g.: loops) are difficult to parallelize
 - Functional languages are naturally suited to concurrency due to its nature:
 - Immutable object instances, higher order functions, and parallelism exposed in the level of procedure calls

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

38

アナウンス

- 講義スライド, 講義スケジュール
 - www.arch.cs.titech.ac.jp

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

39