
1

1

計算機アーキテクチャ 第二 (O)

5. パイプライン処理とハザード

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2012年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル）

3
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（パイプライン処理）

(1) 0x20: add $8, $17, $18
(2) 0x24: sub $9, $20, $21
(3) 0x28: lw $10, 24($22)

Clock 1:

0x20
add

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（パイプライン処理）

Clock 2:

(1) 0x20: add $8, $17, $18
(2) 0x24: sub $9, $20, $21
(3) 0x28: lw $10, 24($22)

5
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（パイプライン処理）

Clock 3:

(1) 0x20: add $8, $17, $18
$17 = 7
$18 = 8

(2) 0x24: sub $9, $20, $21
$20 = 100
$21 = 13

(3) 0x28: lw $10, 24($22)
$22 = 128 6

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ハザード (hazard)

 構造ハザード (structural hazard)
 オーバラップ実行する命令の組み合わせをハードウェアがサ

ポートしていない場合．

 資源不足により生じる．

 データ・ハザード(data hazard)
 データの受け渡しの制約によって生じるハザード

 制御ハザード(control hazard)
 分岐命令，ジャンプ命令によって生じるハザード

命令を適切なサイクルで実行できないような状況が存在す
る．これをハザードと呼ぶ．

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPSの基本的な５つのステップ（ステージ）

 IFステージ

メモリから命令をフェッチする．

 IDステージ

命令をデコードしながら，レジスタを読み出す．

 EXステージ

命令操作の実行またはアドレスの生成を行う．

 MEMステージ

データ・メモリ中のオペランドにアクセスする．

 WBステージ

結果をレジスタに書き込む．

8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

データハザード

9
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

データハザード (ストール)

10

stall stall

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

フォワーディングによるデータハザードの回避

11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

フォワーディングのための変更点

12

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

データハザードによる生じるストール

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ハザード (hazard)

 構造ハザード (structural hazard)
 オーバラップ実行する命令の組み合わせをハードウェアがサ

ポートしていない場合．

 資源不足により生じる．

 データ・ハザード(data hazard)
 データの受け渡しの制約によって生じるハザード

 制御ハザード(control hazard)
 分岐命令，ジャンプ命令によって生じるハザード

命令を適切なサイクルで実行できないような状況が存在す
る．これをハザードと呼ぶ．

14

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

単純な５段のRISCのパイプライン

プロセッサ性能はパイプライン化されていないものと比較して最大で５倍になる．

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

メモリポートを１つしか持たないプロセッサ

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

構造ハザードによるパイプラインストール

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ハザード (hazard)

 構造ハザード (structural hazard)
 オーバラップ実行する命令の組み合わせをハードウェアがサ

ポートしていない場合．

 資源不足により生じる．

 データ・ハザード(data hazard)
 データの受け渡しの制約によって生じるハザード

 制御ハザード(control hazard)
 分岐命令，ジャンプ命令によって生じるハザード

命令を適切なサイクルで実行できないような状況が存在す
る．これをハザードと呼ぶ．

18

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPSの基本的な５つのステップ（ステージ）

 IFステージ

メモリから命令をフェッチする．

 IDステージ

命令をデコードしながら，レジスタを読み出す．

分岐命令である可能性を考慮し，読み出されたレジスタ

の間で一致比較を行う．必要であれば、命令のオフセット

フィールドを符号拡張し，インクリメントされたPCに符号拡

張されたオフセットを足し合わせて分岐先のアドレスを計

算する．条件が成立した場合には分岐先アドレスをPCに
セットして，このステージで分岐命令は完了する．

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（パイプライン処理）

20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

静的に採用できる制御ハザードの対処 （演習）

 戦略１

 分岐方向が判明するまで分岐命令の後続命令を止める．

 ＩＤステージで分岐命令が完了することに注意．

21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

静的に採用できる制御ハザードの対処

 戦略１

 分岐方向が判明するまで分岐命令の後続命令を止める．

 ＩＤステージで分岐命令が完了することに注意．

 分岐命令の出現毎に１サイクルのストールが発生する．

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略２： predicted-not-taken方式 (Exercise)

 すべての分岐命令を not taken （不成立）として処理を

進める．

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略２： predicted-not-taken方式

 すべての分岐命令を not taken （不成立）として処理を

進める．

 分岐結果が不成立であれば，ペナルティは生じない．

 分岐結果が成立であれば，１サイクルのペナルティ

24

5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略３： predicted-taken方式

 すべての分岐命令を taken （成立）として処理を進める．

 ＩＤステージが終了して，分岐と判定するとすぐに分岐成

立として処理を継続．

 今考えているパイプライン構成では，この方式の利点は

ない．

25
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

 分岐命令の後続の幾つかの命令を実行した後に，

分岐する．

１サイクルの遅延を持つ命令実行順は次の通り．

 分岐命令を実行

 分岐命令の次アドレスの命令を実行

 分岐成立では，飛び先アドレスの命令を実行（不成立では，分岐

命令の次の次のアドレスの命令を実行）

26

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

 分岐命令の後続の幾つかの命令を実行した後に，分岐

する．

27
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

 分岐命令の後続の幾つかの命令を実行した後に，分岐

する．分岐命令によるストールは生じない．

 初期のRISCプロセッサにて利用された．

28

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

遅延分岐スロットのスケジューリング

Nop命令

29
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

30

アナウンス

 講義スライド，講義スケジュール

 www.arch.cs.titech.ac.jp

