2012-10-15 20124 &% H

g HERTE70Tr RSO

RISC vs. CISC
RISCE Syt D &Z D ENE

Instruction Set Architecture (ISA) Type Sales

O Other

B SPARC

B Hitachi SH

B PowerPC

B Motorola 68K
B MIPS

O1A-32

@ ARM

Millions of Processor

200 7‘5 []
0

1998 1999 2000 2001 2002
PowerPoint “comic” bar chart with approximate values (see text for correct values)

2

Adapted from Computer Ofganization and Design,_Patterson & Hennessy. © 2005

RISC - Reduced Instruction Set Computer

= RISC philosophy
= fixed instruction lengths
= load-store instruction sets
= limited addressing modes
= limited operations
= Sun SPARC, HP PA-RISC, IBM PowerPC, Compaq
Alpha, MIPS, ...

Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability,
memory space (embedded systems)

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

MIPS R3000 Instruction Set Architecture (ISA)

= Instruction Categories Registers
= Computational
RO - R31

= Load/Store
= Jump and Branch
= Floating Point

= Coprocessor
= Memory Management

« Special

3 Instruction Formats: all 32 bits wide

[or [rs [t [ra [sa [funct |Rformat
Lop Trs [t [immediate | 1 format
‘ opP | jump target ‘ J format

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

= MIPS assembly language-arithmetic statement
add $t0, $si1, $s2
sub $t0, $s1, $s2

= Each arithmetic instyuction performs only one
operation

= Each arithmetic instruction fits in 32 bits and specifies
exactly three operands
destination <« sourcel source2

= Operand order is fixed (destination first)

= Those operands are all contained in the datapath’s
register file ($t0,$s1,$s2) — indicated by $

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

MIPS Register Convention,
ABI (Application Binary Interface)

Name Register Usage Preserve

Number on call?
$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Machine Language - Add Instruction

= Instructions, like registers and words of data, are 32
bits long

= Arithmetic Instruction Format (R format):
add $t0, $s1, $s2

shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

| op | rs | rt [rd | shamt [funct |
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result's destination

= f=(g+h)-(i+j)

f,g, h i, jZFNEFhLRE $s0, $s1, $52, $53, $s4
ZEYF 5T 5.
FDRTF—EAVREI IS ILLIFERDMIPST T 4
—ay-a—RIxE3LEDH.

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

i HE (BEE 48R—D)

» f=(g+h)-(i+]j)

f,g, h i, jZFNEhLTRE $s0, $s1, $s2, $53, $s4
IZEIYF1F5ET 5.
EDRTF—EAVNEIV IS ILLIERDMIPST T 4
—Sar-a—KIRESHDH.

add $t0, $s1, $s2 #$t0= (g +h)
add $t1, $s3, $s4 #
sub $s0, $tO, $t1 #

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Machine Language - Load Instruction

= Load/Store Instruction Format (I format):
Iw $t0,; 24($s2)

‘ op rs | rt ‘ 16 bit offset ‘
Memory
24, + $s2 = OXFFFfffff
... 0001 1000 $t0 —— 0x120040ac
+...1001 0100 ss 0x12004004
. 1010 1100 =
0x120040ac 0x0000000¢
0x00000008
0x00000004
0x00000000
data word address (hex) 4

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

MIPS Memory Access Instructions

= MIPS has two basic data transfer instructions for
accessing memory
Iw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

= The data is loaded into (Iw) or stored from (sw) a
register in the register file — a 5 bit address
= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value
= A 16-bit field meaning access is limited to memory locations

within a region of +213 or 8,192 words (+215 or 32,768 bytes) of
the address in the base register

= Note that the offset can be positive or negative

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

11

EE

= = h+ A[S]
100EEM LA ETIANHHET B. &z, AU/ AFITE
#g, h ISLY RS $s1, $s2 EEIYF1T5. SoIZEEHID
FIRTFL RIS $s3 [ZHBHDNTINGET S.
EDRT—IAVREIV AL E L.

12

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

i EE (B3FE 5018—Y)

= g=h+A[8]
100FEM R BELFIAD H B ET B, Ffz, AV ATIFE
#g, h IZLYURA $s1, $s2 #ENY T IT5. SHIZEFID
BIA7RL R (F $s3 [HisHON TS ET S.
EDRF—RAVREIVRSILE L.

w $t0, 32($s3)
add $si1, $s2, $t0

$t0 = A[8]
#g=h+$t0

13

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

BEE

= A[12] = h + A[8]

100N DELFIADHDET S, Fiz, AV INAFIFE
g, h IZLYURA $s1, $s2 #ENY TS, SHIZEFID
BB 7RLR(E $s3 SN TVSET 3.
EDRF—FAVREIVRSILE L.

14

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

i HE (BEESIR—Y)

= A[12] = h + A[8]

100FEN LR 2 EEFIANHHET . Ff=, AVINIFEE
#hISLORE $s2 ZEIVFITSH. SHICEETIDEART
FLRIF $s3 [ZHHLN TN ET B.
EDRT—IAVMEIV AL E L.

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $tO

15

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

MIPS Control Flow Instructions

= MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0+$sl
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

« Ex: if (i==j) h =1 + j;
bne $s0, $sl1, Lbll

add $s3, $s0, $sl
Lbl1:

= Instruction Format (I format):

‘ op | rs ‘ rt | 16 bit offset |

= How is the branch destination address specified?
16

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

More Branch Instructions

= We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, st

= Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0
= Instruction format (R format):
‘ op | s ‘ rt | rd ‘ | funct |

17

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

More Branch Instructions, Con't

= Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions
= less than blt $s1, $s2, Label
slt $at, $sl, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

= less than or equal to ble $s1, $s2, Label
= greater than bgt $s1, $s2, Label
= greatthan orequalto bge $s1, $s2, Label

= Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

= Its why the assembler needs a reserved register ($at) 18

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:
Jj label #go to label

= Instruction Format (J Format):

Aside: Branching Far Away
= What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue — it inserts an
unconditional jump to the branch target and inverts the

Adapted rom Computer Organzation and Design,_Paterson & Hennessy. © 2005

\ [condition
from the low order 26 bits of the jump instruction
beq $s0, $si1, L1
becomes
bne $s0, $s1, L2
J L1
L2:
19 20
Adapted from Computer Organization and Design, Patterson & Hennessy. © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
Instructions for Accessing Procedures MIPS Immediate Instructions
= Small constants are used often in typical code
. MIPS_ procedure call instruction:) i = Possible approaches?
jal ProcedureAddress #jump and Tink = put “typical constants” in memory and load them
= Saves PC+4 in register $ra to have a link to the next = create hard-wired registers (like $zero) for constants like 1
instruction for the procedure return = have special instructions that contain constants !
= Machine format (J format): -
() addi $sp, $sp, 4 #$sp = $sp + 4
[op] 26 bit address slti $t0, $s2, 15 #$t0 = 1 if $s2<15
= Then can do procedure return with a = Machine format (I format):
Jjr $ra #return [op [s [ot] 16 bit immediate I format
= Instruction format (R format): = The constant is kept inside the instruction itself!
Cop [5] [funct | = Immediate format limits values to the range +215-1 to -2%°
21 22
dspte rom Computer Organizaton and Design_Patterson & Hemnessy. © 2005 Adspte rom Computer Organizaton and Design_Patterson & Hennessy. © 2005
MIPS ISA So Far MIPS Register Convention,
ABI (Application Binary Interface)
Category Instr Op Code Example Meaning
Arithmetic add 0and32 |add $si,$s2, $s3 $s1 = $52 + $53 Name Register Usage Preserve
EUR & 't) subtract 0and34 |sub $si,$s2, $s3 $s1= $s2 - $53 Number on call?
rma
add immediate 8 addi $s1, $s2, 6 $s1=9s2+6 $Ze|’0 0 constant O (hardware) n.a.
or immediate 13 ori $s1,$s2,6 $51=$52v 6
Data Transfer | load word 35 w o $s1, 24(8s2) $s1 = Memory(8s2+24) $at 1 reserved for assembler n.a.
(1 format) store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1 $vO0 - $v1 2-3 returned values no
load byte 32 b $s1, 25($52) $51 = Memory($52+25) $a0 - $a3 4-7 arguments yes
store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1 $t0 _ $t7 8-15 temporaries no
load upper imm 15 lui $s1,6 $s1=6*216
Cond. Branch | br on equal 4 beq $s1, $s2, L if ($51==952) go to L $s0 - $s7 16-23 saved values yes
%j‘n;) br on not equal 5 bne $s1, 952, L if (851 1=852) go to L $t8 - $t9 24-25 temporaries no
set on less than 0and 42 slt $si, $s2, $s3 if ($s2<$s3) $§%l::102|se $gp 28 global pointer yes
set on less than 10 slti $s1, $52, 6 if (§52<6) $s15) else $sp 29 stack pointer yes
immediate -
Uncond Jump 2 j 2500 go to 10000 $fp 30 frame pointer yes
i,”,"_ffmm)@ & Tjump register Oands |jr st o to St $ra 31 return addr (hardware) yes
jump and link 3 jal - 2500 go to 10000; $ra=PC+4 23 24

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

i ABI Sample

int simple_add(int a, int b)
{

return a + b;

i ABI Sample

int simple_add(int a, int b)

{
return a + b;
1
simple_add:
add $v0, $a0, $al #
jr $ra # return

25 26
i AFvryb—k i Exercise
#AA Arch 11 swap (int v[I, int k)
B, $HES, R [
int temp;
PHEEESY—IBEET) temp = v[KI;
vkl = v[k+11;
v[k+1] = temp;
]
27 28
Adaeled from Camgulsr OVza/Y/Iat)on and De5/gn Patterson & Hennessz. © 2005 W
i Exercise 1 i CISC - Complex Instruction Set Computer
swap:
_ , add §t1, $al, $al # = CISC philosoph
swap (int v[], int k) add $t1, $t1, $t1 # $t1 = k * 4; . P) p Y
{ - ' = ! fixed instruction lengths
add $t1, $a0, $t1 # $t1 = &Ikl ! load)
int temp: w! Qa.—storelnstrycuon sets
temp = vIk]: v $t0, OBt # $t0 = vIKI: . : :!m!:ej addfef_s'”g modes
VIK] = vikel]: lw # = ! limited operations
VIkH] = temp: . ; = DEC VAX11 Intel 80x86, ...
} sw #
jr $ra # return
sl $t1, $al, 2 , 20

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

i TFrFovA

= BEXTAF, BEATV21—L
= Www.arch.cs.titech.ac.jp

= MIPS/SPIM Reference Cardl&kE+LFALET.

Adapted from Computer Ofganization and Design,_Patterson & Hennessy. © 2005

31

