
1

11

計算機アーキテクチャ 第二 (O)

RISC vs. CISC
RISC命令セットの例とその動作

2012年 後学期2012-10-15

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2

Instruction Set Architecture (ISA) Type Sales

0

200

400

600

800

1000

1200

1400

1998 1999 2000 2001 2002

Other

SPARC

Hitachi SH

PowerPC

Motorola 68K

MIPS

IA-32

ARM

PowerPoint “comic” bar chart with approximate values (see text for correct values)

M
ill

io
ns

 o
f P

ro
ce

ss
or

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
33

RISC - Reduced Instruction Set Computer

 RISC philosophy
 fixed instruction lengths
 load-store instruction sets
 limited addressing modes
 limited operations

 Sun SPARC, HP PA-RISC, IBM PowerPC, Compaq
Alpha, MIPS, …

Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability,

memory space (embedded systems)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
44

MIPS R3000 Instruction Set Architecture (ISA)

 Instruction Categories
 Computational
 Load/Store
 Jump and Branch
 Floating Point

 coprocessor

 Memory Management
 Special

R0 - R31

PC
HI

LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
55

MIPS Arithmetic Instructions

 MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs only one
operation

 Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination  source1 op source2

 Operand order is fixed (destination first)
 Those operands are all contained in the datapath’s

register file ($t0,$s1,$s2) – indicated by $

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
66

MIPS Register Convention,
ABI (Application Binary Interface)

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
77

 Instructions, like registers and words of data, are 32
bits long

 Arithmetic Instruction Format (R format):
add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
8

演習

 f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリケ

ーション・コードはどうなるか．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
9

演習 （参考書 48ページ）

 f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリケ

ーション・コードはどうなるか．

add $t0, $s1, $s2 # $t0 = (g + h)
add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
1010

 Load/Store Instruction Format (I format):
lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit offset

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
1111

MIPS Memory Access Instructions

 MIPS has two basic data transfer instructions for
accessing memory
lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

 The data is loaded into (lw) or stored from (sw) a
register in the register file – a 5 bit address

 The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value
 A 16-bit field meaning access is limited to memory locations

within a region of 213 or 8,192 words (215 or 32,768 bytes) of
the address in the base register

 Note that the offset can be positive or negative

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
12

演習

 g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
13

演習 （参考書 50ページ）

 g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $s1, $s2, $t0 # g = h + $t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
14

演習

 A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
15

演習 （参考書 51ページ）

 A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数 h にレジスタ $s2 を割り付ける．さらに配列の開始ア

ドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
1616

 MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

 Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

 Instruction Format (I format):

op rs rt 16 bit offset

 How is the branch destination address specified?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
1717

 We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt

 Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0

 Instruction format (R format):

More Branch Instructions

op rs rt rd funct

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
1818

More Branch Instructions, Con’t

 Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions
 less than blt $s1, $s2, Label

 less than or equal to ble $s1, $s2, Label

 greater than bgt $s1, $s2, Label

 great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

 Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler
 Its why the assembler needs a reserved register ($at)

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
1919

 MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

 Instruction Format (J Format):

op 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2020

Aside: Branching Far Away

 What if the branch destination is further away than
can be captured in 16 bits?

 The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

beq $s0, $s1, L1

becomes
bne $s0, $s1, L2

j L1

L2:

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2121

 MIPS procedure call instruction:
jal ProcedureAddress #jump and link

 Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return

 Machine format (J format):

 Then can do procedure return with a
jr $ra #return

 Instruction format (R format):

Instructions for Accessing Procedures

op 26 bit address

op rs funct

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2222

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

 Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

 Small constants are used often in typical code
 Possible approaches?

 put “typical constants” in memory and load them
 create hard-wired registers (like $zero) for constants like 1
 have special instructions that contain constants !

 The constant is kept inside the instruction itself!
 Immediate format limits values to the range +215–1 to -215

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2323

MIPS ISA So Far

Category Instr Op Code Example Meaning

Arithmetic
(R & I
format)

add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6

or immediate 13 ori $s1, $s2, 6 $s1 = $s2 v 6

Data Transfer
(I format)

load word 35 lw $s1, 24($s2) $s1 = Memory($s2+24)

store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1

load byte 32 lb $s1, 25($s2) $s1 = Memory($s2+25)

store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1

load upper imm 15 lui $s1, 6 $s1 = 6 * 216

Cond. Branch
(I & R
format)

br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L

br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) go to L

set on less than 0 and 42 slt $s1, $s2, $s3 if ($s2<$s3) $s1=1 else
$s1=0

set on less than
immediate

10 slti $s1, $s2, 6 if ($s2<6) $s1=1 else
$s1=0

Uncond.
Jump (J &
R format)

jump 2 j 2500 go to 10000

jump register 0 and 8 jr $t1 go to $t1

jump and link 3 jal 2500 go to 10000; $ra=PC+4
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

2424

MIPS Register Convention,
ABI (Application Binary Interface)

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
25

ABI Sample

int simple_add(int a,int b)

{

return a + b;

}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
26

ABI Sample

int simple_add(int a,int b)

{

return a + b;

}

simple_add:

add $v0, $a0, $a1 #

jr $ra # return

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
27

スキャネットシート

氏名，学籍番号，

学籍番号マーク欄(右詰で)

年 月 日 Arch II

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
28

Exercise

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
29

Exercise 1
swap:

add $t1, $a1, $a1 #

add $t1, $t1, $t1 # $t1 = k * 4;

add $t1, $a0, $t1 # $t1 = &v[k];

lw $t0, 0($t1) # $t0 = v[k];

lw #

sw #

sw #

jr $ra # return

sll $t1, $a1, 2

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
303030

CISC - Complex Instruction Set Computer

 CISC philosophy
 ! fixed instruction lengths
 ! load-store instruction sets
 ! limited addressing modes
 ! limited operations

 DEC VAX11 Intel 80x86, …

6

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
3131

アナウンス

 講義スライド，講義スケジュール

 www.arch.cs.titech.ac.jp

 MIPS/SPIM Reference Cardは次回も利用します．

