2012-07-12 20124 R4 TOKYO TECH

SHEMT—FTIF Y E— (E)

E

WS T14AXY, RAID

EH - HEIFER
kise_at_cs.titech.ac.jp
W6415E&E= AKEH13:20 — 14:50

Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Ofganization and Design,_Patterson & Hennessy. © 2005

TSUBAME 2.0

T13 2+ = Mg 145 LD SRR L
— MR PUNFTRE TR, 3545 5

A=Y oha AR A
pii i TETE 1 *
i CIFS, Blugarc Mercury 100 (~BFGRIDSCalar) home

% B, O55: HP
%3, 3TR S

gscrd

RAID: Disk Arrays

Redundant Array of Inexpensive Disks

= Arrays of small and inexpensive disks
= Increase potential throughput by having many disk drives
= Data is spread over multiple disk
= Multiple accesses are made to several disks at a time
= Reliability is lower than a single disk

= But availability can be improved by adding redundant
disks (RAID)

RAID: Level O (RAID 0, TEH %L, RESA1EVY)

= Multiple smaller disks as opposed to one big disk

= Spreading the blocks over multiple disks — striping — means

that multiple blocks can be accessed in parallel increasing the
performance

= 4 disk system gives four times the throughput of a 1 disk system

= Same cost as one big disk — assuming 4 small disks cost the
same as one big disk

= No redundancy, so what if one disk fails?

RAID: Level 1 (Redundancy via Mirroring)

D D O OOl O g

redundant (check) data

= Uses twice as many disks for redundancy
so there are always two copies of the data

= The number of redundant disks = the number of data disks
so twice the cost of one big disk

= writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID 0

= What if one disk fails?

= If a disk fails, the system just goes to the “mirror” for the data

RAID: Level 0+1 (RAIDO1, Striping with Mirroring)

[R i R i R e R R < R e R < R — 1

redundant (check) data

= Combines the best of RAID 0 and RAID 1,
data is striped across four disks and mirrored to four disks
= Four times the throughput (due to striping)

= # redundant disks = # of data disks
so twice the cost of one big disk

= writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID 0

= What if one disk fails?
= If a disk fails, the system just goes to the “mirror” for the data

RAID: Level 2 (Redundancy via ECC)

Checks Checks
blk1,b0 blkl,bl blkl,b2 blk1,b3 4567 236,7

sloletol &lo)
3 5 6 O 7 7
ECC disks

FRYETIEQ—F (ECC, error-correcting code) disks 4 and 2 point to either
data disk 6 or 7, but ECC disk 1 says disk 7 is okay, so disk 6 must be in error

= ECC disks contain the parity of data on a set of distinct
overlapping disks
= # redundant disks = log (total # of data disks)
so almost twice the cost of one big disk
= writes require computing parity to write to the ECC disks
= reads require reading ECC disk and confirming parity

RAID: Level 3 (Bit/Byte-Interleaved Parity)

blk1,b0 blk1,bl blk1,b2 blk1,b3 bit parity disk

DO E | O

= Cost of higher availability is reduced to 1/N where N is the
number of disks in a protection group ({545)L—7)
= # redundant disks = 1 x # of protection groups
= writes require writing the new data to the data disk as well as
computing the parity, meaning reading the other disks,
so that the parity disk can be updated
= reads require reading all the operational data disks as well as the parity
disk to calculate the missing data that was stored on the failed disk

RAID: Level 4 (Block-Interleaved Parity)

Block parity disk

o O O 5
blk1 blk2 blk3 blk4

= Cost of higher availability still only 1/N but the parity is
stored as blocks associated with sets of data blocks
= Four times the throughput (striping)
= # redundant disks = 1 X # of protection groups
= Supports “small reads” and “small writes”

(reads and writes that go to just one (or a few) data disk in a
protection group)

10

Small Writes

= RAID 3
New D1 data

25 ® @

3 reads and ® “X0orR
2 writes
involving a// — s —

= RAID 4 small writes

New D1 data
R < R < R —
) B & &5
o

1
9\

2 reads and
2 writes
i D2 D3 D4
s [e2] (2] [o%] .

RAID: Level 5 (Distributed Block-Interleaved Parity)

OoOoggd

one of these assigned as the block parity disk

= Cost of higher availability still only 1/N but the parity
block can be located on any of the disks
so there is no single bottleneck for writes
= Still four times the throughput (striping)
= # redundant disks = 1 X # of protection groups

= Supports “small reads” and “small writes” (reads and writes
that go to just one (or a few) data disk in a protection group)
= Allows multiple simultaneous writes

12

Distributing Parity Blocks

D
2
w)
IS

RAID 5

o

(&) &I GED GO
&0 GD GD DI

00
6D &0 GD D)

=) &) G

G0 (D (0 &0
&) (D (]

LG GDED G

(&) D LD D))
(G &0 CD (0

(
(
(

= By distributing parity blocks to all disks, some small
writes can be performed in parallel
13

Disk and RAID Summary

= Four components of disk access time:
= Seek Time: advertised to be 3 to 14 ms but lower in real systems
= Rotational Latency: 5.6 ms at 5400 RPM and 2.0 ms at 15000 RPM
= Transfer Time: 30 to 80 MB/s
= Controller Time: typically less than .2 ms

= RAIDs can be used to improve availability

= RAID 0 and RAID 5 — widely used in servers, one estimate is that
80% of disks in servers are RAIDs

= RAID 1 (mirroring) — EMC, Tandem, IBM
= RAID 4 — Network Appliance
= RAIDs have enough redundancy to allow continuous
operation

14

Exercise

HMRTARY (IN—FT4RY) DIEEMER LS 517 RAID(Redundant Array of
Inexpensive Disks)h#%. 58/\—R T4 RIDHD1E% /) T1ELTRLBRAID-4
DEBETRE. £z, COVRATFLATT AN RIESNSHBWLHEERE &

mean time to failure (MTTF), mean time to repair (MTTR)ZRWL\T, 7RASE YT+«
ORETHE. KEDRAID-ADTRAFEYT4ER LEE BT BMLFREDRA &,

K&, PHES,
FHEEST—IM

15

2012-07-12 20124 Hii% % TOKYO TECH

W AERT RO E— @

fRA8ELIR

HH R HEIYER
kise_at_cs.titech.ac.jp
W641#%H= AHEH13:20 — 14:50

5. 32E v (4GB) D AE!) ZEf

0x00000000 00000000 00000000 00000000 000000002 = 010
2GB Memory !
term
10~ 113528 w10, 0w, 1353, 2 vors, Lowd sworoge: 000, 0.0, 0
Tasks: 164 total, 1 ruming, 163 sleeping, stogped, 0 zombl
e R 0. ST o kT me, iy
imr SENT: tatal, ok e,
VIRT_RES SR
1 root 15 g 6 Sed
2root L o 0 0
FE- S T A
5 root L o0 0 0
frm mE o888
8 root. BT - 0 9 0
& root. R o 0 0
P
OXFFFFFFFF 11111111 11111111 11111111 111111112 = 4,294,967,296 - 11

17

Virtual Memory ({R#85218)

= Use main memory as a “cache” for

secondary memory
= Provides the ability to easily run progmm\
larger than the size of physical memory
= Simplifies loading a program for execution
by providing for code relocation (i.e., the code
can be loaded anywhere in main memory)
= Allows efficient and safe sharing of memory

N Main memory
among multiple programs

Secondary memory (disk)
18

Virtual Memory ({R#85218)

= What makes it work? — again the Principle of Locality
= A program is likely to access a relatively small portion
of its address space during any period of time

19

Virtual Memory ({R#85218)

= Each program is compiled into its own
address space — a “virtual address (VA)”
space

= Physical address (PA) for the access of
physical devices

= During run-time each
virtual address, VA ({8 7KL X) must be
translated to a
physical address, PA (#E7KL X)

Main memory

Secondary memory (disk)
20

Virtual Memory ({R#85218)

Virtual address world Physical address world

VA for 4GB memory Main memory

of Task C (2GB)
VA for 4GB memory
of Task B
VA for 4GB memory
of Task A Secondary memory (disk)
(1024GB) 21

Two Programs Sharing Physical Memory

= A program’s address space is divided into pages (all one
fixed size) or segments (variable sizes)

= The starting location of each page (either in main memory or in
secondary memory) is contained in the program’s page table

Program 1's page table
virtual address space
hN

2 main memory
/:*%_’/» 4KB page

-

Program 2
irtual address space

<

~
P
«
Y 22

Address Translation

= A virtual address is translated to a physical address by a
combination of hardware and software

. A 4KB i
Virtual Address (VA) ssume page size

31 30 L 12 11 L 0
Virtual page number Page offset
| Physical page number Page offset |
29 L 12 11 0

Physical Address (PA)

= So each memory request first requires an address

translation from the virtual space to the physical space
23

Address Translation Mechanisms

page fault :

Virtual page # Offset . A .
page is not in the main memory

Physical page #

Physical jpage Main memory

base addr

Disk storage

olklolkloklklplklp|e (<

s

Page Table (/—58) in main memory o

T

Address Translation

Physeal page

Page Table (R—Sg)

Virtual Address (VA) o)
31 30 L 12 11 L 0
Virtual page number Page offset
| Physical page number | Page offset |

29 L 12 11 0
Physical Address (PA)

s R=UHYARIKBDIGE, VT NER—CROAE)HAX(E?

25

Virtual Addressing with a Cache

= Thus it takes an extra memory access to translate a virtual
address to a physical address

VA PA miss
CPU Trans- Cache Main
lation Memory
hitl_ ‘—I
data
= This makes memory e
(cache) accesses very
- | ETEEITTD —
expensive
(if every access was really .
two accesses) L

Page Table (A—38)
(n main memory) 26

Virtual Addressing, the hardware fix

= The hardware fix is to use a Translation
Lookaside Buffer (TLB) (PRLRAZEH#/\vT7)
= a small cache that keeps track of recently used
address mappings to avoid having to do a page
table lookup

27

Making Address Translation Fast

TLB (Translation Lookaside Buffer)

Vinual page #] \ Tag Physical page base addr
1. L]
1 o
128 entries | 1. LY
0 N\
1 Iy ARNAN
1)
Physical page Main memory
V__base addr
1 -
1] —
1] *
1]
1 -—
1M entries 1] —
0| — 1
= Disk storage
0 -
1] -
0 —
Page Table

(in physical memory) 28

Translation Lookaside Buffers (TLBs)

= Just like any other cache, the TLB can be organized
as fully associative, set associative, or direct mapped

V | Virtual Page # | Physical Page #

= TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)

= TLBs are typically not more than 128 to 256 entries even on
high end machines

29

A TLB in the Memory Hierarchy

Ya t hit Yat

VA PA miss
cPU o Cache Main
Core ookup Memory
missl hit

Trans-
lation
data

A TLB miss —is it a page fault or a TLB miss ?
= If the page is in main memory, then the TLB miss can be handled
(in hardware or software) by loading the translation information
from the page table into the TLB
= Takes 10's of cycles to find and load the translation info into the TLB
= If the page is not in main memory, then it's a true page fault
= Takes 1,000,000's of cycles to service a page fault

30

A TLB in the Memory Hierarchy

Yat hit EA .
VA PA miss
TLB Main
cPU Lookup Cache Memory
missl hit
Trans-
lation
data

= page fault : page is not in physical memory
= TLB misses are much more frequent than true page faults

31

Two Machines’ TLB Parameters

Intel P4 AMD Opteron
TLB organization |1 TLB for instructions
and 1TLB for data
Both 4-way set
associative

Both use ~LRU
replacement

2 TLBs for instructions and
2 TLBs for data

Both L1 TLBs fully
associative with ~LRU
replacement

Both L2 TLBs are 4-way set
associative with round-robin
LRU

Both L1 TLBs have 40
entries

Both L2 TLBs have 512
entries

Both have 128 entries

TLB misses handled in

TBL misses handled in
hardware

hardware

32

A Typical Memory Hierarchy

By taking advantage of the principle of locality (EFrtE)
Present much memory in the cheapest technology
at the speed of fastest technology

On-Chip Components [
— e — TR
: i Main Secondary
- Memory Memory
Datapath| 0 (DRAM) | } (Disk)
% H
Lol
Speed (%cycles): ¥2's 1's 10's 100's 1,000's
Size (bytes): 100’s K's 10K’s M's GstoT's
Cost: highest lowest

33

The Hardware/Software Boundary

= What parts of the virtual to physical address translation
is done by or assisted by the hardware?
= Translation Lookaside Buffer (TLB) that caches the
recent translations
= TLB access time is part of the cache hit time
= May cause an extra stage in the pipeline for TLB access
= Page table storage, fault detection and updating
= Page faults result in interrupts (precise) that are then handled
by the OS

= Hardware must support (i.e., update appropriately) Dirty and
Reference bits (e.g., ~LRU) in the Page Tables

34

TFoUR

" BRATIRBLURTDa—)L
= Www.arch.cs.titech.ac.jp
 BEREHENERICRLIENHZDT
EERICHERTHIL.

35

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

