
1

2012年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

磁気ディスク，RAID

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2012-07-12

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Acknowledgement

 Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

 Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

2

TSUBAME 2.0

3 44

RAID: Disk Arrays

 Arrays of small and inexpensive disks
 Increase potential throughput by having many disk drives

 Data is spread over multiple disk
 Multiple accesses are made to several disks at a time

 Reliability is lower than a single disk
 But availability can be improved by adding redundant

disks (RAID)

Redundant Array of Inexpensive Disks

55

RAID: Level 0 (RAID 0, 冗長性なし，ストライピング)

 Multiple smaller disks as opposed to one big disk
 Spreading the blocks over multiple disks – striping – means

that multiple blocks can be accessed in parallel increasing the
performance
 4 disk system gives four times the throughput of a 1 disk system

 Same cost as one big disk – assuming 4 small disks cost the
same as one big disk

 No redundancy, so what if one disk fails?

blk1 blk3blk2 blk4

66

RAID: Level 1 (Redundancy via Mirroring)

 Uses twice as many disks for redundancy
so there are always two copies of the data
 The number of redundant disks = the number of data disks

so twice the cost of one big disk
 writes have to be made to both sets of disks,

so writes would be only 1/2 the performance of RAID 0

 What if one disk fails?
 If a disk fails, the system just goes to the “mirror” for the data

blk1.1 blk1.3blk1.2 blk1.4 blk1.1 blk1.2 blk1.3 blk1.4

redundant (check) data

2

77

RAID: Level 0+1 (RAID01, Striping with Mirroring)

 Combines the best of RAID 0 and RAID 1,
data is striped across four disks and mirrored to four disks
 Four times the throughput (due to striping)
 # redundant disks = # of data disks

so twice the cost of one big disk
 writes have to be made to both sets of disks,

so writes would be only 1/2 the performance of RAID 0

 What if one disk fails?
 If a disk fails, the system just goes to the “mirror” for the data

blk1 blk3blk2 blk4 blk1 blk2 blk3 blk4

redundant (check) data

88

RAID: Level 2 (Redundancy via ECC)

 ECC disks contain the parity of data on a set of distinct
overlapping disks
 # redundant disks = log (total # of data disks)

so almost twice the cost of one big disk
 writes require computing parity to write to the ECC disks
 reads require reading ECC disk and confirming parity

blk1,b0 blk1,b2blk1,b1 blk1,b3
Checks
4,5,6,7

Checks
2,3,6,7

Checks
1,3,5,7

3 5 6 7 4 2 1

10 0 0 11

ECC disks
0

誤り訂正コード (ECC, error-correcting code) disks 4 and 2 point to either
data disk 6 or 7, but ECC disk 1 says disk 7 is okay, so disk 6 must be in error

1

99

RAID: Level 3 (Bit/Byte-Interleaved Parity)

 Cost of higher availability is reduced to 1/N where N is the
number of disks in a protection group （保護グループ）

 # redundant disks = 1 × # of protection groups
 writes require writing the new data to the data disk as well as

computing the parity, meaning reading the other disks,
so that the parity disk can be updated

 reads require reading all the operational data disks as well as the parity
disk to calculate the missing data that was stored on the failed disk

blk1,b0 blk1,b2blk1,b1 blk1,b3

10 01

bit parity disk

1010

RAID: Level 4 (Block-Interleaved Parity)

 Cost of higher availability still only 1/N but the parity is
stored as blocks associated with sets of data blocks
 Four times the throughput (striping)
 # redundant disks = 1 × # of protection groups
 Supports “small reads” and “small writes”

(reads and writes that go to just one (or a few) data disk in a
protection group)

Block parity disk

blk1 blk2 blk3 blk4

1111

Small Writes

 RAID 3
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P

3 reads and
2 writes

involving all
the disks

 RAID 4 small writes
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P

2 reads and
2 writes

involving just
two disks




XOR

1212

RAID: Level 5 (Distributed Block-Interleaved Parity)

 Cost of higher availability still only 1/N but the parity
block can be located on any of the disks
so there is no single bottleneck for writes
 Still four times the throughput (striping)
 # redundant disks = 1 × # of protection groups
 Supports “small reads” and “small writes” (reads and writes

that go to just one (or a few) data disk in a protection group)
 Allows multiple simultaneous writes

one of these assigned as the block parity disk

3

1313

Distributing Parity Blocks

 By distributing parity blocks to all disks, some small
writes can be performed in parallel

1 2 3 4 P0

5 6 7 8 P1

9 10 11 12 P2

13 14 15 16 P3

RAID 4 RAID 5

1 2 3 4 P0

5 6 7 P1 8

9 10 P2 11 12

13 P3 14 15 16

1414

Disk and RAID Summary

 Four components of disk access time:
 Seek Time: advertised to be 3 to 14 ms but lower in real systems
 Rotational Latency: 5.6 ms at 5400 RPM and 2.0 ms at 15000 RPM
 Transfer Time: 30 to 80 MB/s
 Controller Time: typically less than .2 ms

 RAIDs can be used to improve availability
 RAID 0 and RAID 5 – widely used in servers, one estimate is that

80% of disks in servers are RAIDs
 RAID 1 (mirroring) – EMC, Tandem, IBM
 RAID 4 – Network Appliance

 RAIDs have enough redundancy to allow continuous
operation

15

Exercise

 磁気ディスク（ハードディスク）の信頼性を向上させる技術 RAID(Redundant Array of
Inexpensive Disks)がある．5台ハードディスクの中の1台をパリティとして用いるRAID-4
の構成を示せ．また，このシステムでデータが破壊される典型的な例を議論せよ．

 mean time to failure (MTTF), mean time to repair (MTTR)を用いて，アベイラビリティ

の式を示せ．先のRAID-4のアベイラビリティを向上させるために、有効な手段を述べよ。

氏名，学籍番号，
学籍番号マーク欄

2012年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

仮想記憶

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2012-07-12

例：３２ビット（４ＧＢ）のメモリ空間

00000000 00000000 00000000 000000002 = 010

11111111 11111111 11111111 111111112 = 4,294,967,296 - 110

0x00000000

0xFFFFFFFF

2GB Memory !

17

Virtual Memory （仮想記憶）

 Use main memory as a “cache” for
secondary memory
 Provides the ability to easily run programs

larger than the size of physical memory
 Simplifies loading a program for execution

by providing for code relocation (i.e., the code
can be loaded anywhere in main memory)

 Allows efficient and safe sharing of memory
among multiple programs Main memory

Secondary memory (disk)

18

4

Virtual Memory （仮想記憶）

 What makes it work? – again the Principle of Locality
 A program is likely to access a relatively small portion

of its address space during any period of time

19

Virtual Memory （仮想記憶）

 Each program is compiled into its own
address space – a “virtual address (VA)”
space

 Physical address (PA) for the access of
physical devices
 During run-time each

virtual address, VA （仮想アドレス） must be
translated to a
physical address, PA （物理アドレス）

Main memory

Secondary memory (disk)

20

Virtual Memory （仮想記憶）

Main memory

(2GB)

Secondary memory (disk)

(1024GB)

VA for 4GB memory
of Task A

VA for 4GB memory
of Task B

VA for 4GB memory
of Task C

Virtual address world Physical address world

21

Two Programs Sharing Physical Memory

Program 1’s page table
virtual address space

main memory

 A program’s address space is divided into pages (all one
fixed size) or segments (variable sizes)
 The starting location of each page (either in main memory or in

secondary memory) is contained in the program’s page table

Program 2
virtual address space

4KB page

22

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

 So each memory request first requires an address
translation from the virtual space to the physical space

 A virtual address is translated to a physical address by a
combination of hardware and software

Assume 4KB page size

23

Address Translation Mechanisms

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表） in main memory

Offset

Physical page #

Offset

page fault :
page is not in the main memory

24

5

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

 ページサイズ4KBの場合，シンプルなページ表のメモリサイズは？

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表）
(in main memory)

Offset

Physical page #

Offset

25

Virtual Addressing with a Cache

 Thus it takes an extra memory access to translate a virtual
address to a physical address

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

 This makes memory
(cache) accesses very
expensive
(if every access was really
two accesses)

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表）
(in main memory)

Offset

Physical page #

Offset

26

Virtual Addressing, the hardware fix

 The hardware fix is to use a Translation
Lookaside Buffer (TLB) （アドレス変換バッファ）

 a small cache that keeps track of recently used
address mappings to avoid having to do a page
table lookup

27

Making Address Translation Fast

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag Physical page base addrV

TLB (Translation Lookaside Buffer)

Page Table
(in physical memory)

1M entries

128 entries

28

Translation Lookaside Buffers (TLBs)

 Just like any other cache, the TLB can be organized
as fully associative, set associative, or direct mapped

V Virtual Page # Physical Page #

 TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)
 TLBs are typically not more than 128 to 256 entries even on

high end machines

29

A TLB in the Memory Hierarchy

 A TLB miss – is it a page fault or a TLB miss ?
 If the page is in main memory, then the TLB miss can be handled

(in hardware or software) by loading the translation information
from the page table into the TLB
 Takes 10’s of cycles to find and load the translation info into the TLB

 If the page is not in main memory, then it’s a true page fault
 Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB
Lookup

Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t

30

6

A TLB in the Memory Hierarchy

 page fault : page is not in physical memory
 TLB misses are much more frequent than true page faults

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t

31

Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions
and 1TLB for data
Both 4-way set
associative
Both use ~LRU
replacement

Both have 128 entries

TLB misses handled in
hardware

2 TLBs for instructions and
2 TLBs for data
Both L1 TLBs fully
associative with ~LRU
replacement
Both L2 TLBs are 4-way set
associative with round-robin
LRU
Both L1 TLBs have 40
entries
Both L2 TLBs have 512
entries
TBL misses handled in
hardware

32

Second
Level
Cache

(SRAM)

A Typical Memory Hierarchy

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egF

ile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

IT
LB

D
T

LB
Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

 By taking advantage of the principle of locality （局所性）

 Present much memory in the cheapest technology

 at the speed of fastest technology

33

The Hardware/Software Boundary

 What parts of the virtual to physical address translation
is done by or assisted by the hardware?
 Translation Lookaside Buffer (TLB) that caches the

recent translations
 TLB access time is part of the cache hit time
 May cause an extra stage in the pipeline for TLB access

 Page table storage, fault detection and updating
 Page faults result in interrupts (precise) that are then handled

by the OS
 Hardware must support (i.e., update appropriately) Dirty and

Reference bits (e.g., ~LRU) in the Page Tables

34

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
35

アナウンス

 講義スライドおよびスケジュール

 www.arch.cs.titech.ac.jp
 講義日程が変更になることがあるので

頻繁に確認すること．

