2011-06-28 20124 Fi%:#) TOKYO TECH

* HEMT—XTOFv F— (B)

AEY3: Fyyda

EH - HEIFER
kise_at_cs.titech.ac.jp
W64158%%= KBEH13:20 — 14:50

Direct Mapped Cache

= Consider the main memory word reference string

Start with an empty cache - all
blocks initially marked as not valid 012343415

Tag O miss 1 miss 2 miss 3 miss
00 | Mem(0 00 | Mem(0) 00 | Mem(0) 00 | Mem(0)
00 | Mem(1, 00 | Mem(1) 00 | Mem(1)

00 [Mem(2) 00 | Mem(2)

00 | Mem(3

4 miss 3 hit 4 hit 15 miss

01 4

T00.[Mem(©) 01 [Mem(4) 01 [Mem(4) 01 [Mem(4)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)
00 | Mem(3) 00 | Mem(3) 00 | Mem(3)| 1,[*€0 | Mem{R)]

15
= 8 requests, 6 misses

Multiword Block Direct Mapped Cache

= Four words/block, cache size = 1K words

Byte

3130 1312 11 4321
Hit offset Data

Black offset

IndexValid Tag Data (4 word)

253

255

Taking Advantage of Spatial Locality

= Let cache block hold more than one word
012343415

0 miss 1 hit 2 miss

[00 [Mem(1) [Mem(0)] [00 [Mem(1) | Mem(0)| [00 [Mem(1)] Memgoi
| | | ‘ ‘ | | |00 |Mem(3)| Mem(2

3 hit 4 miss 3hit

0a 4
[00 [mMem@@) | Mem(@| [0e.[Mem@}]| Memite) [01 [Mem(s) | Mem§4§

[00 [mem@) | Mem@)| [00 [Mem(@)| Mem@) [00 [Mem(3) [Mem(z

T—20
W 4 hit 15miss
T 01 |Mem(5) | Mem(4)| 1401 |Mem(5)| Mem(4;
UJ Loo [mem() [Mem@)] oo | mema} menitz
L 3 =
) . i = 8 requests, 4 misses
What kind of locality are we taking advantage of? 3 4

Handling Cache Hits (Miss is the next issue)

Lower Level

. Upper Level Memo!
= Read hits (1% and D$) Memory Y
= this is what we want! Block X

Block Y

= Write hits (D$ only)

= allow cache and memory to be inconsistent
= write the data only into the cache block (write-back)
= need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted
= require the cache and memory to be consistent
= always write the data into both the cache block and the next level in
the memory hierarchy (write-through) so don’t need a dirty bit
= writes run at the speed of the next level in the memory hierarchy —

so slow! — or can use a write buffer, so only have to stall if the
write buffer is full

Write Buffer for Write-Through Caching

Cache |[+—
Processor DRAM
—|

write buffer

= Write buffer between the cache and main memory

= Processor: writes data into the cache and the write buffer

= Memory controller: writes contents of the write buffer to memory
= The write buffer is just a FIFO

= Typical number of entries: 4

= Works fine if store frequency is low
= Memory system designer’s nightmare, Write buffer

saturation (§8%0)

= One solution is to use a write-back cache; another is to use an L2
cache

Sources of Cache Misses

= Compulsory (#)#A8HB=X, cold start or process
migration, first reference):

= First access to a block, “cold” fact of life, not a whole lot you
can do about it

= If you are going to run “millions” of instruction, compulsory
misses are insignificant
= Conflict GE&MEZX, collision):
= Multiple memory locations mapped to the same cache location
= Solution 1: increase cache size
= Solution 2: increase associativity
= Capacity (BEM%IR):
= Cache cannot contain all blocks accessed by the program
= Solution: increase cache size

Handling Cache Misses

= Read misses (I$ and D$)
= stall (Rb—JL, IIBEESES)the entire pipeline, fetch the block
from the next level in the memory hierarchy, install it in the cache
and send the requested word to the processor, then let the pipeline
resume

= Write misses (D$ only)
= Write allocate
= (@) write the word into the cache updating both the tag and data, no
need to check for cache hit, no need to stall
= (b) stall the pipeline, fetch the block from next level in the memory
hierarchy, install it in the cache, write the word from the processor to
the cache, then let the pipeline resume

= No-write allocate — skip the cache write and just write the word
to the write buffer (and eventually to the next memory level), no
need to stall if the write buffer isn't full;
must invalidate the cache block since it will be inconsistent

Miss Rate vs Block Size vs Cache Size

10
< 8 KB
s -~ 16 KB
Q
B 5 e | 64 KB
s

e o S —
0 ; : ‘ ‘
8 16 32 64 128 256

Block size (bytes)
Miss rate goes up if the block size becomes a significant fraction
of the cache size
because the number of blocks that can be held in the same size
cache is smaller

Block Size Tradeoff

= Larger block sizes take advantage of spatial locality but

= If the block size is too big relative to the cache size,
the miss rate will go up

= Larger block size means larger miss penalty
= Latency to first word in block + transfer time for remaining words

Mi Average
iss - i i Miss Access
Rate Exploits Spatial Locality Pepalty Time

Increased Miss

Fewer blocks Penalty
compromises & Miss Rate
\ Temporal Locality

_/

Block Size

Block Size Block Size

QIn general, Average Memory Access Time

= Hit Time + Miss Penalty x Miss Rate
10

Reducing Cache Miss Rates, associativity

Allow more flexible block placement

= Inadirect mapped cache a memory block maps to exactly
one cache block

= At the other extreme, could allow a memory block to be
mapped to any cache block — fully associative cache

= A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

11

Caching: Direct mapped (First Example)

Main Memory

0000xx
Cache 0001xx
. 0010xx Two low order bits
IndexValid Tag Data % 0011xx define the byte in the
00 0100xx word (32-b words)
o1 0101xx
10 0110xx

11 \ 0111xx Q2: How do we find
\ 1000xx jt?

Q1: Is it there? 1001xx

1010xx Use next 2 low

1011xx order memory

tag to the high order 1100xx address bits — the

2 memory address 1101xx jndex - to determine

bits to tell if the 1110xx which cache block

memory block is in the 1111xx

cache (block address) modulo (# of blocks in the cache)

Compare the cache

12

Set Associative Cache Example

Main Memory

0000xx Two I der bits
wo low order bi
Cache gg%x define the byte in the
Way Set V. Tag Data 0011xx word (32-b words)
One word blocks
0 0 0100xx
1 0101xx
0 0110xx
1 1 0111xx
1000xx Q: How do we find it?
Q: Is it there? 1001xx
1010xx Use next 1 low order
Com[_)are all the cache 1011xx ~ memory address bit to
;?gghsc:?d:es ;e;r;?)g]e 1100xx determine which cache
address bits 1101xx et
to tell if the memory block 1110xx
is in the cache 1111xx

13

Another Reference String Mapping

= Consider the main memory word reference string
04040404

Start with an empty cache —
all blocks initially marked as not valid

0 miss 4 miss 0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 | Mem(0) 000 | Mem(0)

010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

= 8 requests, 2 misses

= Solves the ping pong effect in a direct mapped cache due to
conflict misses

14

Four-Way Set Associative Cache

= 28 = 256 sets each with four ways (each with one block)

3130 1312 11 2 1 s Byte offset
Tag
ndex V Tag Data V Tag Data V Tag Data V Tag Data
O[T T] OofT T] OofT T] OofT T]
1 I I I I I B I |
2[1 I 1 2[d I 1 2[] I 1 2] I |
253 253 253 253
254 254 254 254
255 255 255 255

P L Iy 69

Range of Set Associative Caches

= For a fixed size cache

Used for tag compare Selects the set Selects the word in the block
Ta'g | Index | Block offset ‘Byte |offset

. o Increasing associativity
Decreasing associativity
4-‘ Fully associative
Direct mapped }‘—

(only one set)

(only one way) Tag is all the bits except
‘ Smaller tags block and byte offset
15 16
Costs of Set Associative Caches Cache
= N-way set associative cache costs
= N comparators (delay and area)
= MUX delay (set selection) before data is available
= Data available after set selection and Hit/Miss decision.
= When a miss occurs,
which way’s block do we pick for replacement ? A5

= Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time
= Must have hardware to keep track of when each way’s block was
used
= For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way's bit)
= Random

17

18

Benefits of Set Associative Caches

= The choice of direct mapped or set associative depends on the
cost of a miss versus the cost of implementation

12
-+ 4KB
10 8KB
\ 5 16KB
g 81 - 32KB
T o5 ——64KB
12
2 — 128KB
R
—~+-512KB
27 P —
0 A S———— ‘ Data from Hennessy &

Patterson, Computer
l-way 2-way 4-way 8-way Architecture, 2003

Associativity

= Largest gains are in going from direct mapped to 2-way 19

Reducing Cache Miss Rates by multiple levels

Enough room on the die for bigger L1 caches or for a second level
of caches — normally a unified L2 cache (i.e., it holds both
instructions and data) and in some cases even a unified L3 cache
For our example,

CPligeq Of 2,

100 cycle miss penalty (to main memory),

36% load/stores,

a 2% (4%) L11$ (D$) miss rate,

add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

CPlyys = 2 + .02X25 + .36X.04X25 + .005%100 +
.36%.005%100 = 3.54

(as compared to 5.44 with no L2$) I

Multilevel Cache Design Considerations

= Design considerations for L1 and L2 caches are very
different

= Primary cache should focus on minimizing hit time in support of
a shorter clock cycle

= Secondary cache should focus on reducing miss rate to reduce
the penalty of long main memory access times

= The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache — so it can be smaller (i.e.,
faster) but have a higher miss rate

= For the L2 cache, hit time is less important than miss rate
= The L2$ hit time determines L1$’s miss penalty

21

Key Cache Design Parameters

L1 typical L2 typical
Total size (blocks) 250 to 2000 |4000 to
250,000
Total size (KB) 16 to 64 500 to 8000
Block size (B) 32 to 64 32 to 128
Miss penalty (clocks) 10to 25 100 to 1000
Miss rates 2% to 5% 0.1% to 2%

22

Two Machines’ Cache Parameters

Intel P4 AMD Opteron
L1 organization | Split 1$ and D$ Split 1$ and D$
L1 cache size 8KB for D$, 96KB for 64KB for each of I$ and D$
trace cache (~I$)
L1 block size 64 bytes 64 bytes
L1 associativity 4-way set assoc. 2-way set assoc.
L1 replacement ~ LRU LRU
L1 write policy write-through write-back
L2 organization Unified Unified
L2 cache size 512KB 1024KB (1MB)
L2 block size 128 bytes 64 bytes
L2 associativity 8-way set assoc. 16-way set assoc.
L2 replacement | ~LRU ~LRU
L2 write policy write-back write-back

23

Fif< 40701y Intel Montecito

2{EDEPICTOEYHI7
1MB L2, 12MB L3F+vvia
EPICa 7111 issue, 2way

Temporal MT
PMDIERBIS VO RE

= 1.72BTrs

= 21.5mm x 27.7mm f |
= 90nm :
= 100W
NO—HEHANERFYT
FoxtonZ & #;

Source: ISSCC 2005 papers

24

TatvHDTF—RIRR (T)L -H L)L)

Cache

A4

25 26
OPT: Optimal Replacement Policy Optimal Replacement Policy @l
The Optimal Replacement Polic :
P P Y Understanding OPT
@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or Access Sequence AS}AI : A : A : A EA4EA5 : Azi A A73 Aéi Ag
choose not to place the miss causing line in the cache at all. = —
o OPT order for Ag R R RS R
©Q Self Replacement : The latter choice is referred to as a — T T
self-replacement or a cache bypass PT arder for 7‘{6 TR R R 0 O U T N O
Optimal Replacement Policy @ Consider 4 way associative cache with one set initially containing lines
On & miss replace the candicate to which an access is least (A1,42,43,44), consider the access stream shown in table
imminent [Belady 1966 Mattson 1970 McFarling-thesis] @ Access 45 misses, replacement decision proceeds as follows
Q@ Lockahead Window : Window of accesses between miss causing @ Identify replacement candidates - (4; A 43.44,45)
access and the access to the least imminent replacement ©Q Lookahead and gather imminence order - shown in table,
candidate. Single pass simulation of OPT make use of lookahead lookahead window circled
ind to identify repl didates and medify current © Make replacement decision : .45 replaces 42
cache state [Sugumar-SIGMETRICS1903] @ Ag self-replaces, lockahead window and imminence order in table
OPT: HFEYTLAL TLVEVEDEE SRR . o PR

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache

The Cache Design Space

. i)) Cache Size
= Several interacting dimensions

= cache size
= block size
= associativity
= replacement policy
= write-through vs write-back
= write allocation Block Size
= The optimal choice is a compromise
= depends on access characteristics
= workload Bad
= I-cache, D-cache
= depends on technology / cost
« Simplicity often wins Good | Factor
Less More

Associativity

Factor B

29

TFToUR

» BREATFIRBLUVRTYa1—)L
= www.arch.cs.titech.ac.jp
» BRAENERICLLIENHEIDT
SRERICHER T HTL.

30

