
1

2012年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

メモリ3： キャッシュ

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2011-06-28

2

Direct Mapped Cache

0 1 2 3

4 3 4 15

 Consider the main memory word reference string
0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

Start with an empty cache - all
blocks initially marked as not valid

 8 requests, 6 misses

Tag

3

Multiword Block Direct Mapped Cache

8
Index

Data (4 word)Index TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

20

20Tag

Hit Data

32

Block offset

 Four words/block, cache size = 1K words

What kind of locality are we taking advantage of? 4

Taking Advantage of Spatial Locality

0

 Let cache block hold more than one word
0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)
miss

00 Mem(1) Mem(0)
hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

 8 requests, 4 misses

5

 Read hits (I$ and D$)
 this is what we want!

 Write hits (D$ only)
 allow cache and memory to be inconsistent

 write the data only into the cache block (write-back)
 need a dirty bit for each data cache block to tell if it needs to be

written back to memory when it is evicted

 require the cache and memory to be consistent
 always write the data into both the cache block and the next level in

the memory hierarchy (write-through) so don’t need a dirty bit
 writes run at the speed of the next level in the memory hierarchy –

so slow! – or can use a write buffer, so only have to stall if the
write buffer is full

Handling Cache Hits (Miss is the next issue)

Lower Level
MemoryUpper Level

Memory

Block X

Block Y

Write Buffer for Write-Through Caching

 Write buffer between the cache and main memory
 Processor: writes data into the cache and the write buffer
 Memory controller: writes contents of the write buffer to memory

 The write buffer is just a FIFO
 Typical number of entries: 4
 Works fine if store frequency is low

 Memory system designer’s nightmare, Write buffer
saturation （飽和）
 One solution is to use a write-back cache; another is to use an L2

cache

Processor
Cache

write buffer

DRAM

6

2

7

Sources of Cache Misses

 Compulsory (初期参照ミス，cold start or process
migration, first reference):
 First access to a block, “cold” fact of life, not a whole lot you

can do about it
 If you are going to run “millions” of instruction, compulsory

misses are insignificant

 Conflict (競合性ミス，collision):
 Multiple memory locations mapped to the same cache location
 Solution 1: increase cache size
 Solution 2: increase associativity

 Capacity (容量性ミス）:
 Cache cannot contain all blocks accessed by the program
 Solution: increase cache size

8

Handling Cache Misses

 Read misses (I$ and D$)
 stall （ストール，立ち往生させる）the entire pipeline, fetch the block

from the next level in the memory hierarchy, install it in the cache
and send the requested word to the processor, then let the pipeline
resume

 Write misses (D$ only)
 Write allocate

 (a) write the word into the cache updating both the tag and data, no
need to check for cache hit, no need to stall

 (b) stall the pipeline, fetch the block from next level in the memory
hierarchy, install it in the cache, write the word from the processor to
the cache, then let the pipeline resume

 No-write allocate – skip the cache write and just write the word
to the write buffer (and eventually to the next memory level), no
need to stall if the write buffer isn’t full;
must invalidate the cache block since it will be inconsistent

9

Miss Rate vs Block Size vs Cache Size

0

5

10

8 16 32 64 128 256

Block size (bytes)

M
is

s
ra

te
 (

%
) 8 KB

16 KB

64 KB

256 KB

 Miss rate goes up if the block size becomes a significant fraction
of the cache size
because the number of blocks that can be held in the same size
cache is smaller

10

Block Size Tradeoff

 Larger block size means larger miss penalty
 Latency to first word in block + transfer time for remaining words

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks
compromises
Temporal Locality

Block Size

Average
Access
Time

Increased Miss
Penalty

& Miss Rate

Block Size

In general, Average Memory Access Time
= Hit Time + Miss Penalty x Miss Rate

 Larger block sizes take advantage of spatial locality but
 If the block size is too big relative to the cache size,

the miss rate will go up

11

Reducing Cache Miss Rates, associativity

 Allow more flexible block placement
 In a direct mapped cache a memory block maps to exactly

one cache block

 At the other extreme, could allow a memory block to be
mapped to any cache block – fully associative cache

 A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

12

Caching: Direct mapped (First Example)

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order
2 memory address
bits to tell if the
memory block is in the
cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find
it?

Use next 2 low
order memory
address bits – the
index – to determine
which cache block

(block address) modulo (# of blocks in the cache)

Index

3

13

Set Associative Cache Example

0

Cache

Tag Data

Q: Is it there?

Compare all the cache
tags in the set to the
high order 3 memory
address bits
to tell if the memory block
is in the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

Main Memory

Two low order bits
define the byte in the
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set

14

Another Reference String Mapping

0 4 0 4

 Consider the main memory word reference string
0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache –
all blocks initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

 Solves the ping pong effect in a direct mapped cache due to
conflict misses

 8 requests, 2 misses

15

Four-Way Set Associative Cache
 28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1
0

Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select
16

Range of Set Associative Caches

 For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

17

Costs of Set Associative Caches

 N-way set associative cache costs
 N comparators (delay and area)
 MUX delay (set selection) before data is available
 Data available after set selection and Hit/Miss decision.

 When a miss occurs,
which way’s block do we pick for replacement ?
 Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time
 Must have hardware to keep track of when each way’s block was

used
 For 2-way set associative, takes one bit per set →

set the bit when a block is referenced
(and reset the other way’s bit)

 Random

Cache

本棚

机

18

4

19

Benefits of Set Associative Caches

 The choice of direct mapped or set associative depends on the
cost of a miss versus the cost of implementation

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
R

at
e

4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB

Data from Hennessy &
Patterson, Computer
Architecture, 2003

 Largest gains are in going from direct mapped to 2-way
20

Reducing Cache Miss Rates by multiple levels

 Enough room on the die for bigger L1 caches or for a second level
of caches – normally a unified L2 cache (i.e., it holds both
instructions and data) and in some cases even a unified L3 cache

 For our example,
 CPIideal of 2,
 100 cycle miss penalty (to main memory),
 36% load/stores,
 a 2% (4%) L1I$ (D$) miss rate,
 add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

CPIstalls = 2 + .02×25 + .36×.04×25 + .005×100 +
.36×.005×100 = 3.54

(as compared to 5.44 with no L2$)

L1 cache L2 cache L3 cache

21

Multilevel Cache Design Considerations

 Design considerations for L1 and L2 caches are very
different
 Primary cache should focus on minimizing hit time in support of

a shorter clock cycle
 Secondary cache should focus on reducing miss rate to reduce

the penalty of long main memory access times

 The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache – so it can be smaller (i.e.,
faster) but have a higher miss rate

 For the L2 cache, hit time is less important than miss rate
 The L2$ hit time determines L1$’s miss penalty

22

Key Cache Design Parameters

L1 typical L2 typical

Total size (blocks) 250 to 2000 4000 to
250,000

Total size (KB) 16 to 64 500 to 8000

Block size (B) 32 to 64 32 to 128

Miss penalty (clocks) 10 to 25 100 to 1000

Miss rates 2% to 5% 0.1% to 2%

23

Two Machines’ Cache Parameters

Intel P4 AMD Opteron

L1 organization Split I$ and D$ Split I$ and D$

L1 cache size 8KB for D$, 96KB for
trace cache (~I$)

64KB for each of I$ and D$

L1 block size 64 bytes 64 bytes

L1 associativity 4-way set assoc. 2-way set assoc.

L1 replacement ~ LRU LRU

L1 write policy write-through write-back

L2 organization Unified Unified

L2 cache size 512KB 1024KB (1MB)

L2 block size 128 bytes 64 bytes

L2 associativity 8-way set assoc. 16-way set assoc.

L2 replacement ~LRU ~LRU

L2 write policy write-back write-back

先端マイクロプロセッサ Intel Montecito

 ２個のEPICプロセッサコア

 1MB L2, 12MB L3キャッシュ

 EPICコアは11 issue, 2way
Temporal MT

 初の10億超トランジスタ

 1.72BTrs
 21.5mm x 27.7mm
 90nm
 100W

 パワー制御用の専用チップ

Foxtonを搭載

Source: ISSCC 2005 papers

24

5

プロセッサのデータパス（シングル・サイクル）

25

Cache

本棚

机

26

OPT: Optimal Replacement Policy

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache
OPT: あまり切迫していないものを置き換える．

27

Optimal Replacement Policy の例

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache
28

29

The Cache Design Space

 Several interacting dimensions
 cache size
 block size
 associativity
 replacement policy
 write-through vs write-back
 write allocation

 The optimal choice is a compromise
 depends on access characteristics

 workload
 I-cache, D-cache

 depends on technology / cost

 Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

30

アナウンス

 講義スライドおよびスケジュール

 www.arch.cs.titech.ac.jp
 講義日程が変更になることがあるので

頻繁に確認すること．

