
1

1

計算機アーキテクチャ 第二 (O)

メニーコアアーキテクチャ

2011年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

マルチコア（２個～数10個）からメニーコアへ

 デスクトップPC等に搭載される

高性能・汎用プロセッサのアーキテクチャ

は，今後，

数百個のコアを搭載する

メニーコアプロセッサの時代へ

Dual core

Quad

core

Many-core processor

（メニーコアプロセッサ）

今後

現在
マルチコアプロセッサ

チップ

コンピュータ
（ＰＣ）

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

メニーコアアーキテクチャにおける重要な選択肢

 コアのアーキテクチャ

 スーパースカラ，アウトオブオーダ実行？

 2-way のインオーダ・スーパースカラ程度の複雑さ

 ネットワークアーキテクチャ

 どのようにコアやメモリを接続するのか？

 メモリアーキテクチャ

 共有メモリ（すべてのコアが同じメモリ空間），

 分散メモリ（異なるメモリ空間を持つ）？

 キャッシュ，一貫性管理

3

Many-core processor

（メニーコアプロセッサ）

ネットワーク

4 4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Interconnection Network

(a) Bus

(c) Grid, mesh
(d) Torus

(b) Crossbar

5 5
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Bus Network

 N processors, 1 switch (), 1 link (the bus)

 Only 1 simultaneous transfer at a time

 NB (best case) = link (bus) bandwidth * 1

 BB (worst case) = link (bus) bandwidth * 1

Processor

 node

Bidirectional

network switch

6 6

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Ring Network

 If a link is as fast as a bus, the ring is only twice as fast

as a bus in the worst case, but is N times faster in the

best case

 N processors, N switches, 2 links/switch, N links

 N simultaneous transfers

 NB (best case) = link bandwidth * N

 BB (worst case) = link bandwidth * 2

7 7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Cell BE Element Interconnect Bus

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
8 8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Crossbar (Xbar) Network

 N processors, N2 switches (unidirectional),

2 links/switch, N2 links

 N simultaneous transfers

 NB = link bandwidth * N

 BB = link bandwidth * N/2
9 9

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Fully Connected Network

 N processors, N switches, N-1 links/switch,

(N*(N-1))/2 links

 N simultaneous transfers

 NB (best case) = link bandwidth * (N*(N-1))/2

 BB (worst case) = link bandwidth * (N/2)2

10 10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Fat Tree

C D A B

 Trees are good structures.

People in CS (Computer Science) use them all the time.

Suppose we wanted to make a tree network.

 Any time A wants to send to C, it ties up the upper links,

so that B can't send to D.

 The bisection bandwidth on a tree is horrible - 1 link, at all times

 The solution is to 'thicken' the upper links.
11 11

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Fat Tree

 N processors, log(N-1)*logN switches,

2 up + 4 down = 6 links/switch, N*logN links

 N simultaneous transfers

 NB = link bandwidth * N log N

 BB = link bandwidth * 4

12 12

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

2D and 3D Mesh/Torus Network

 N simultaneous transfers

 NB = link bandwidth * 4N or link bandwidth * 6N

 BB = link bandwidth * 2 N1/2 or link bandwidth * 2 N2/3

 N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D

torus) links/switch, 4N/2 links or 6N/2 links

Mesh Torus

メモリ構成

14 14

単一バス結合のマルチプロセッサ/マルチコア，共有メモリ

 Caches are used to reduce latency and to lower bus traffic

 Must provide hardware to ensure that caches and memory are

consistent (cache coherency)

 Must provide a hardware mechanism to support process

synchronization

Proc1 Proc2 Proc4

Caches Caches Caches

Single Bus

Memory I/O

Proc3

Caches

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ネットワーク結合のマルチプロセッサ，分散メモリ

Proc1 Proc2 Proc4

Caches Caches Caches

Network (2D Mesh)

Memory

Proc3

Caches

Memory Memory Memory

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ネットワーク結合のマルチコアプロセッサ

Core1 Core2 Core4

Network (2D mesh)

Memory

Core3

Memory Memory Memory

17 Kise Laboratory Tokyo Tech

メニーコアプロセッサモデル
M-Core

メニーコアプロセッサシミュレータ

SimMc

Arch Lab. TOKYOTECH 2008-07-22

4

Kise Laboratory Tokyo Tech

M-Coreプロジェクト www.arch.cs.titech.ac.jp/mcore/

19

アーキテクチャモデル

(0, 1) (0, 2) (0, 3) (0, 8)

Off chip memory modules (banks) & switch

Conventional
I/O

(1, 1) (2, 1)

(1, 8)

(1, 2) (2, 2)

(2, 8)

(3, 1)

(3, 2)

(3, 8)

(8, 1)

(8, 2)

(8, 8)

Conv.
RISC

Module
(0, 0)

Node
20

Kise Laboratory Tokyo Tech

M-CoreにおけるノードID

• 8ビットの整数 x, y を用いて，(x, y) の座標によりノードを指定する．x, y
は 0～255 の値をとる．ただし， x = 0 及び y = 0 は特別なユニットを表
現するために予約する． y = 0 も使わない．

• Core ID は x，y の順序の連結 により生成される16ビットで表現する．

(1, 1)

(1, 2)

(1, 8)

(2, 1)

(2, 2)

(2, 8)

(3, 1)

(3, 2)

(3, 8)

(8, 1)

(8, 2)

(8, 8)

0 0 ID_X ID_Y

ノードID

0 8 16 32

21 Kise Laboratory Tokyo Tech

ネットワークアーキテクチャ

• 2D Mesh Network (２次元メッシュネットワーク）

• ルーティング
– XY Dimension Order Routing (XY次元順ルーティング)

– パケットはX方向に進んだ後に，Y方向に進む．

– 同じ経路を使う複数のパケット間で，パケットの追い越しが生じない．

• ルータアーキテクチャ
– スイッチング

• Warm hole, no virtual channel
– フロー制御

• Xon / Xoff

22

Kise Laboratory Tokyo Tech

ノードアーキテクチャ 23

Core(1,1)

DMA Controller
(DMAC, INCC)

Node
memory

Processing Element
(PE)

Router
(1,1)

load/store

read/write

Node(1,1)

Memory
mapped

I/O

SimMips (シングルサイクルのMIPS32プ)ロセッサ

23 Kise Laboratory Tokyo Tech

SimMc 1 node SimMips

24 24

ノード構成とルータアーキテクチャ

Core

Router

inb
uf

in out

inbuf

in
b
uf

in out

inbuf in

out

XBAR
Switch

West
Router

East
Router

South Router

North Router

in

out

DMAC

24

5

Kise Laboratory Tokyo Tech

DMA 転送 : MC_dma_put

DMAC

Router

Core A

Local
Memory

DMAC

Router

Core B

Local
Memory

• ローカルノードAの保持するデータをリモートノードBのメモリに転送．

• コアAがMC_dma_putを呼び出し，ノードBのローカルメモリにデータを送る．
– リモートノードのID

– リモートノードの書き込みアドレス

– ローカルノードの読み出しアドレス

– 転送サイズ（バイト）

– リモートのストライド（通常は4を指定）

– ローカルのストライド（通常は4を指定)

データ

25

ローカルノードA リモートノードB

Kise Laboratory Tokyo Tech

Library: Multi-Core library MClib

• int MC_init(int *id_x, int *id_y, int *rank_x, int *rank_y);

• void MC_finalize();

• void MC_dma_put(int dst_id, void *remote_addr, void *local_addr,
 size_t size, int remote_stride, int local_stride);

• void MC_dma_get(int get_id, int local_id, void *remote_addr,

 void *local_addr, size_t size, int remote_stride,

 int local_stride);

• int MC_printf(char *format, ...);

• void MC_puts(char* s);

• int MC_sprintf(char *buf, char *format, ...);

• int MC_sleep(int n);

• int MC_clock(unsigned int*);

• etc

26

Kise Laboratory Tokyo Tech

Packet および Flit の構成

• フリット(flit)は 38ビットの固定長とする

address

stride

data valid

tailer header

payload

1 0 1 0 0 0 address

1 0 0 1 0 0 stride

1 1 0 0 0 0 header

1 0 0 0 1 0 data

1 0 0 0 1 1 data

32bit

27 Kise Laboratory Tokyo Tech

Packet および Flit の構成

• パケット(packet)は１つの header flit, 1～9個の address,
stride, data flit であり，最後のフリットは tailer のフラグを立て
ることによって構成される．

• パケットは最長で10flit である．

• フリット(flit)のサイズは 38ビットの固定長とする．

Header flit

Body flit

Body flit

Body flit

Tailer flit

最長のパケット

10flit

28

Kise Laboratory Tokyo Tech

MC_dma_putの流れ – Local-Core ～ Router

DMAC

Router

Core A

Memory mapped I/O

1

フリット パケット
を生成

3 2 4

remote_id

remote_addr

local_addr

size（byte）

remote_stride

local_stride

cmd

ヘッダ情報

Local Memory

29 Kise Laboratory Tokyo Tech 30 30

Router Architecture

30

パケットは入力線を経由して入力バッファに格納され， XBAR switchを通り，適切な方向へと出
力される．各入出力ポートは1フリット分のビット幅を備える． Arbiterがラウンドロビン方式でパ
ケットの調停を行う．入力バッファはFIFOであり，最大4フリットを格納する領域を備える．

6

Kise Laboratory Tokyo Tech

Core to Core の通信タイミング

clk

posedge clk

store Core A

DMAC A - buf

Router A - buf

Router B - buf

DMAC B - buf

header

header

header

Core B

header

load

性能を重視したタイミング

addr

addr

addr

addr

data

data

data

data

31
Adapted from Superscalar Microprocessor Design, Mike Johnson

計算機アーキテクチャと並列性

 命令内の並列性

 命令間の並列性

 スレッド・プロセスレベルの並列性

Adapted from Superscalar Microprocessor Design, Mike Johnson

講義アンケート

 教員コード：１６０００６１

 教員名： 吉瀬謙二

 科目コード： ７２４３

 科目名： 計算機アーキテクチャ第二（O)

サンプルプログラム

34 34

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

test10

35
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

test22

36

7

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

test31

37
Adapted from Superscalar Microprocessor Design, Mike Johnson

レポート 提出方法

 ２月１7日（金）午後６時までに電子メールで提出

 report@arch.cs.titech.ac.jp

 電子メールのタイトル

 Computer Architecture II （学籍番号）

 電子メールの内容

 氏名，学籍番号

 レポート

 ＰＤＦファイルを添付

Adapted from Superscalar Microprocessor Design, Mike Johnson

レポート課題： マルチコアプロセッサ プログラミング

(課題1)

プロセッサシミュレータSimMcを利用して，与えられるソーティングのプログラム(test60)を4個
のコア用に並列化せよ．データ管理用に１コアを用いてもかまわない．
4個のコアを用いて，2倍以上の高速化を達成すること．

コンパイラの最適化オプションを利用しない (-O0を利用する) こと．

ソースコード及び性能向上率を示せ．また，この課題に要した時間を示すこと．

(課題2)
先の(課題1)で用いたプログラムを（必要であれば）修正して，コアの数(1,2,4,8,16)と性能向
上率との関係をグラフに示せ．また，この課題に要した時間を示すこと．
ここでも，コンパイラの最適化オプションを利用しない． -O0を利用する．

並列化していない逐次プログラムの性能を１として，グラフを描くこと．

(課題3)
コンパイラの最適化オプションをO3として，コアの数と性能向上率との関係をグラフに示せ．
並列化しない逐次プログラム (O3) の性能を１として，グラフを描くこと．
また，最適化オプションの影響を議論せよ．
この課題に要した時間を示すこと．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

40

講義用の計算機の使い方

 ユーザ名 archo で serv.arch.cs.titech.ac.jp にログイン

 linuxなど

 ssh archo@serv.arch.cs.titech.ac.jp

 講義時に伝えたパスワードでログイン

 学籍番号でディレクトリを作成して，そこで作業する．

 mkdir myname

 cd myname

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

41

講義用の計算機におけるSimMcの使い方

 ssh archo@serv.arch.cs.titech.ac.jp

 mkdir yourID

 chdir yourID

 cp –r /home/archo/kise/SimMc-kadai .

 cd SimMc-kadai/app/test/test60/

 make clean

 make

 make run

 ../../../sim/SimMc -x2 –y2 test.out

 ../../../sim/SimMc -D4 -x2 –y2 test.out

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

42

アナウンス

 講義スライド，講義スケジュール

 www.arch.cs.titech.ac.jp

http://www.arch.cs.titech.ac.jp/

