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The Alpha 21264 Microprocessor Architecture
R. E. Kessler, E. J. McLellan, and D. A. Webb, Compaq Computer Corporation

Adapted from Computer. ‘Design,_Patterson & Hennessy, © 2005
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= IBM 360/91

The IBM 360/91

Tnstallation of ths IBM380/01 in the Columbia Gomputer Centar machine room in Fabruary or March 1969 Photo: AIS srchive

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005
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Predicted Value = Last-value + Stride

Value History Table (VHT)
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Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005
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Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005
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Value :' 1 2 3 4 5 1 2 3 4
Stride: 1 1 1 1 -4 1 1 1 1.
Result: NP NP NP H H M NP NP H H.

State: I T S S S T T S S S

NP=No Predict, H=Hit, M=Miss
I=Initial, T=Transient, S=Steady
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Adapted from Cory i Design,_Patterson & Hennessy, © 2005
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Program ast-value Stride 2-level Str.
ccl 10734(.05%) 33591(.77%) 13287(.68%)
compress = 2679(02%) 3094(.05%) 1489(.01%)
go 1934(.01%)  4827(.37%)  593(.11%)
m88ksim  16262(.04%) 43832(.20%) 29041(.53%)
perl 1245(.01%)  1544(11%) 2950(.01%)
xlisp 1904(.02%)  2950(.24%) 9(.05%)

Adapted from Computer ‘Design,_Patterson & Hennessy, © 2005

i Range of a Wire in One Clock Cycle

- From the STA Roadmap
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E‘Gﬂl =

1995 2000 2005 2010 2015
Year
= Trend: (a)Wire non-scaling; (b)Relative die size growth; (c)Shorter FO4 stages
= Power Cost of Cross: Latency increase

MICRO-36 (2003, San Diego, CA) Keynote Kerry Bernstein Senior Technical Staff
Member IBM T.J. Watson Research Center
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[1] S.W. Keckler, Doug Burger, C.R. Moore, R. Nagarajan, K. Sankaralingam, V. Agarwal, M.S. Hrishikesh, N. Ranganathan, and P.
Shivakumar, A Wire-Delay Scalable hitecture for High Systems, ional Solid-State Circuits
Conference (ISSCC), pp.1068-1069, February 2003.
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= [Tiles are flat, square pieces of baked clay, carpet, cork, or
other substance, which are fixed as a covering onto a floor
or wall.] Collins COBUILD English Dictionary
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Explicit Dataflow Graph Execution (EDGE)

= Explicit Data Graph Execution
O Defined by two key features

1. Program graph is broken into sequences of blocks
O Basic blocks, hyperblocks, or something else
O Blocks commit atomically or not at all - a block never partially
executes

2. Within a block, ISA support for direct producer-to-consumer
communication
O No shared named registers within a block (point-to-point dataflow
edges only)
O The block's dataflow graph (DFG) is explicit in the architecture
O Caveat: memory is still a shared namespace (bane of prior dataflow
machines)
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Block Compilation

‘ . TRIPS
Mapping Code

Data flow graph

Intermediate Code

i1)addr1,r2,r3 2 3
i2)add r7,r2,r1
i3)1d r4, (r1)
i4)
i5)

Compiler

add r5, rd, #1 Transforms

beqz r5, Oxdeac

@ Temporaries (r1, r4, r5)
@ Outputs (r7) 7

®,
@ Inputs (12, 13) D)
®
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Block Mapping

- -

Mapping onto array

Data flow graph

(1,1}

)

®)

Scheduler
@@ Scheduling is an
@®

optimization; not
necessary for
commectness
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TRIPS Block Example

RISC code TIL (operand format) TASL (target format)
1d  R3, 4(R2) .bbegin blockl [R1] $g1  [2]
add R4, R1, R3 read $t1, $q1 [R2] $g2 [1] [4]
st R4, 4(R2) read $t2, $qg2 [1] 1d L:l 4 [2]
addi R5, R4, #2 1d $t3, 4($t2) [2] add [3] [4]
begqz R4, Block3 add $t4, $tl, $t3 [3] mov [5] [6]
st $td, 4($t2) [4] st 5:2 4
addi $t5, St4, 2 [5] addi 2 [W1]
teqz $t6, Std 6] tegz [7 B
* Read target format b_t<$t6>block3 |[J| :-_? l[ 1.]-->E w]
« Predicated instructions b_f<$t6>block2 [8] b f block2
write $g5, $t5
* LD/ST sequence numbers .bend blockl

* Target fanout with movs

.bbegin block2 ...

* Block outputs fixed
(3 in this example)

Lecture Siide, Kenji KISE TokyoTech Lecture note for CS352 Computer Systems Architecture by Prof. S.W. Keckler 22

TRIPS Block Format

FC— m  Each block is formed from two to five

128 Bytes 128-byte program"chunks”

u  Blocks with fewer than five chunks are
expanded to five chunks in the L1 I-cache

Instruction 126 Bytes = Header chunk includes a block header:

Header
Chunk

Chunk 0 o0 Read/Write instructions
O Block header marker (8 bits)
o Block type (8 bits): 1-4 instruction chunks
" O Store mask (32 bits)
Iné::,ﬁ:u;" 128 Bytes o Block execution flags (8 bits)

= Controls predictors on per_block basis
= Memory synchronization before/after block
= Breakpoint before/after block

Instruction 128 Bytes ¥ Each instruction chunk holds 32 4-byte

Chunk 2 instructions (including NOPs)
= A maximally sized block contains 128
regular instructions, 32 read instructions,
Iné::ﬂign 128 Bytes and 32 write instructions
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TRIPS Tile-level Microarchitecture

SDRAMO IRQ EBI

TRIPS Tiles

G: Processor control - TLB w/ variable size pages, dispatch,
next block predict, commit

R Register file - 32 registers x 4 threads, register forwarding
I Instruction cache - 16KB storage per tile

m[s!xlleu'
[NN

[ ][w

zzl\

[zi[=z][z]

W

[N} M ‘ M D: Data cache - 8KB per tile, 256-entry load/store queue, TLB
) : E: Execution unit - Int/FP ALUs, 64 reservation stations

N[ ' |[m ] N

N | W10 e[ e M Memory - 64K8, configurable as L2 cache o scratchpad
N: OCN network interface - router, translation tables
[N 'm|[m| N[i][o]e]E]e
[N] MM ﬂ "o TT E || E|| OMA: Directmemory access controlier
€| SDC: DDR SDRAM controller

EBC: External bus controller - interface to extemal PowerPC
R || c2c: Chip-to-chip network controller - 4 nks to XY neighbors

On-Chip Network (OCN)

i [l g ][0 [ ][= ][
NINN

| B M c|r|[r|r
SDRAM 1 C2C (x4) Proamend
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Prototype specifications: 7 pupors
-5 BKB I-Cache banks /
-4 8KB D-Cache banks / -
- 128 instruction buffers per ALU 7
- 4 256 register 2-ported register file banks
Register File ’ 4 :::;::m

[ [

P O
] . Output ports
G

Secondary
Cache Interface

Grid Control

TRIPS Processor Tiles

= Partition all major structures into
banks, distribute, and interconnect
u  Execution Tile (E)
o 64-entry Instruction Queue bank
o Single-issue execute pipeline
= Register Tile (R)
o 32-entry Register bank (per thread)
= Data Tile (D)
o BKB Data Cache bank
o L5Q and MHU banks
= Instruction Tile (1)
o 16KB Instruction Cache bank
= Global Control Tile (G)
0 Tracks up to 8 blocks of insts
o Branch prediction & resolution logic

& Operand Network Links  — Fetch Network Links
4 On-Chip Network Links 4 Control Network Links
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Block Fetch Block Execution Timeline
Time (cycles) ——b
o 5w 5 w
m Fetch commands sent to each Frame 2 (BT I ] | I 1
Instruction Cache bank FETCH EXECUTE - commm
(variable execution time)
m  The fetch pipeline is from 4 to 11
Frame 3 (B I I 1
stages deep
Framed [B., [T I 1
m A new block fetch can be initiated Feame s (B L I ]
T
every 8 cycles rrame s (B T I .
m Instructions are fetched into Frame 7 [Bee T I I 1
Ensflsucﬂon ﬁ)\ueue banks (chosen Frame o[BI ‘{ T ]
y the compiler) Frame 1 (B [T I 1
m EDGE ISA allows instructions to
be fetched out-of-order . .
f f m  Execute/commit overlapped across multiple blocks
m  G-tile manages frames as a circular buffer
o D-morph: 1 thread, 8 frames
o T-morph: up to 4 threads, 2 frames each
Lectre Sic, e KIS TokyaTech Lecture note for CS352 Computer Systems Architecture by Prof, S.W. Keckler 27 Lctre Sice, e KISE ToxyaTech Lecture note for CS352 Computer Systems Architecture by Prof. S.W. Keckler 28
Processor Performance TRIPS Tile-level Microarchitecture
TRIPS Alphe TRIPS TRIPS g Re Pre o
a rocessor g
Name P Description e e TRIPS Tiles
Speedup | IPC IPC | Inst/Block N N N NI a R R R T] G: Processor control - TLB w! variable size pages, dispatch,
aztime 5.05 081 | 405 77 | Control, integer math I fexd Dlock pacics commt
(M [ ][ | [ [1[0 )& J[e & & ]| Regiseie- 2 regisers 4 treads, riser orvaring
bezier 3.30 1.05 320 76 Bezier curve, fixed-point math 3 ‘Nl mim ﬂ 1 ﬂ EllE|lE ﬂ I: Instruction cache - 16KB storage per tile
dct8x8 266 | 170 | 470 90 | 2D discrete cosine trans 8 N m| N Vo \TTT g DT e
crex i ) ) \serete cosine transtorm -5 ! E: Execution unit - IntFP ALUs, 64 reservation stations
matrix 3.30 168 | 405 72 | Matrix multiply £ [N (@ |[m] N[[t][o] e ]|[e][e][e]
2 @ M: Memory - 64K8, configurable as L2 cache or scratchpad
Secure hash SN m|[m| NI o|e|ele e
sha 092 228 | 210 80 wrenesh ) 2 —] ] | | N: OCN network interface - route, translation tables
(mostly sequential algorithm) - q Mmim N] il ‘ E E E |
dd 192 304 | 651 74 | Vectoredd S = " o|ele e DMA D i
va : ’ - (limited by load/store bandwidith) I m|[m N o]E | st
SDC: DDR SDRAM controller
[N (m|m|N][o][e]Ele €] "
Simulated on TRIPS and Alpha 21264 cycle simulators [N NNy e e e
imula LA NI G/R R R R C2C: Chip-to-chip network roller - 4 links to XY hbor
Alpha compilation with GEM compiler and maximum opts (04 and tuned for 21264) fowa el [cacl | | e e s
TRIPS compilation with in-develop piler plus some hand-tuni I =
Speedup measured by comparing Alpha cycles to TRIPS cycles SDRAM 1 C2C (x4)
Lectre Sic, e KIS TokgaTech Lecture note for CS352 Computer Systems Architecture by Prof, S.W. Keckler 29 e Sice e KISE ToxyaTech Lecture note for CS352 Computer Systems Architecture by Prof. S.W. Keckler 30
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Growth in clock rate of microprocessors

1]

- From CAQA 5% edition 32
Adapted from Computer Design, Patterson & Hennessy, © 2005
Growth in processor performance
P P L—F DEBICEBRS SR B O
AR - 7V =}
L—7 DA
FyITHATERMS VO RIORKIF2EM T2 1M 5.
transistors
Jotvy HREE MIUUREM
4004 1971 2,250
8008 1972 2,500 MOORE'S LAW
8080 1974 5,000
8086 1978 29,000
286 1982 120,000
386™ processor 1985 275,000
486™ DX processor 1989 1,180,000
Pentium® processor 1993 3,100,000
Pentium 11 processor 1997 7,500,000
Pentium 11 processor 1999 24,000,000
Pentium 4 processor 2000 42,000,000 004 &
1970 1975 1980 1985 1990 1995 2000
L—T DEHES>TAIUDRABMNEMLTE . SHRLEFRDOEMNRAEND.
88 Inteltt, http://www.intel.com/research/silicon/mooreslaw.htm
From CAQA 5 edition 33 34
Adapted from Computer Organization and Design, Patterson & Henne © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
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Many-core processor
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