
1

1

計算機アーキテクチャ 第二 (O)

9. スーパースカラプロセッサ

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2011年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのマイクロアーキテクチャ

マルチサイクルプロセッサ

シングルサイクルプロセッサ

パイプライン

スカラープロセッサ

スーパースカラプロセッサ （インオーダ）

スーパースカラプロセッサ（アウトオブオーダ）

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)とスカラプロセッサ

サイクル当たりの平均実行命令数，IPC (instructions per cycle) の上限は１

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

5段パイプラインの標準的なスカラプロセッサ

4
MipsCore pipeline94 2011-11-09 17:00 ArchLab. TOKYO TECH

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スーパースカラプロセッサと命令レベル並列性

複数のパイプラインを利用して IPC (instructions per cycle) を
1以上に引き上げる，複数の命令を並列に実行

n-way スーパースカラ

ハザードの積極的な解消，ストールの隠蔽が重要

n

2-way superscalar

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

5段パイプラインのインオーダ・スーパースカラプロセッサ
インタリーブ命令メモリ版

6MipsCore in-order SuperScalar 2011-12-02 17:00 ArchLab. TOKYO TECH

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スーパースカラプロセッサにおける
動的スケジューリング（アウトオブオーダ実行）

(1) DIV.D F0, F2, F4
(2) ADD.D F10, F0, F8
(3) SUB.D F12, F8, F14

DIV.D とADD.Dの依存がパイプラインをストールさせ，SUB.D
命令の実行を阻害

SUB.D はパイプラインのどの命令にもデータ依存しない

プログラム順序に従って命令を実行するという制約を取り除く

ことで，この制限を解消

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：
命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの命令パイプライン

Instruction
Fetch Decode Rename Dispatch

Issue Register
Read Execute Commit

The Alpha 21264 Microprocessor Architecture
R. E. Kessler, E. J. McLellan, and D. A. Webb, Compaq Computer Corporation

9 10

計算機アーキテクチャ 第二 (O)

アウトオブオーダ実行プロセッサとフロントエンド

2011年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

高いバンド幅の命令フェッチ

パイプラインにバブルを生じさせないためには，

条件分岐命令をフェッチした時に，次の３つを予測しな

ければならない．

フェッチしている命令が分岐かどうか

分岐方向

分岐先アドレス

11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

Index

DataTagValid

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

Tag

Hit

ラインサイズ 4ワード (16 Byte)

12

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

struct icache_line {
int valid;
int tag;
int data[4];

} iline;

class Icache {
main_memory *mem;
icache_line *buf;

public:
int size;
Icache(int, main_memory*);
int fetch(data_t, data_t*);

};

Icache::Icache(int icache_size, main_memory *m){
mem = m;
size = icache_size;
buf = (icache_line *)calloc(size, sizeof(iline));

}

int Icache::fetch(data_t pc, data_t *ir){
int index = (pc >> 4) % size;
data_t tag = (pc >> 4);
if(buf[index].valid && buf[index].tag==tag){ /** hit **/

for(int i=0; i<4; i++) ir[i]=buf[index].data[i];
return 1;

}
else{ /** cache miss **/

buf[index].valid = 1;
buf[index].tag = tag;
for(int i=0; i<4; i++){

data_t ir_t;
mem->ld_4byte(pc+4*i, &ir_t);
buf[index].data[i] = ir[i] = ir_t;

}
return 0; }

}

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の実装

分岐成立の場合にのみ，分岐先アドレスを登録する．

Validビットは利用しなくてもよい．

Tag
Index

Branch TargetTag

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

Target Address

32

Hit
14

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の実装

struct btb_line {
int tag;
int data;

};

class BTB {
btb_line *buf;

public:
int size;
BTB(int);
void fetch(data_t, data_t*);
void regist(data_t, data_t);

};

BTB::BTB(int btb_size){
size = btb_size;
buf = (btb_line *)calloc(size, sizeof(btb_line));

}

void BTB::fetch(data_t pc, data_t *target){
int index = (pc >> 2) % size;
data_t tag = (pc >> 2);
if(buf[index].tag==tag) *target=buf[index].data;
else *target = 0;

}

void BTB::regist(data_t pc, data_t target){
int index = (pc >> 2) % size;
data_t tag = (pc >> 2);
buf[index].tag = tag;
buf[index].data = target;

}

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の改良

Tag
Index

Branch TargetTag

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

Target Address

32

Hit

キャッシュラインに１つの分岐のみを許す

Branch Location

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュにおけるミスアラインメント

分岐命令S5の飛び先をT1とする．

- S1 S2 S3
S4 S5 - -

- T1 T2 T3
T4 - - -

分岐

ソースのキャッシュブロック１

ソースのキャッシュブロック２

ターゲットのキャッシュブロック１

ターゲットのキャッシュブロック２

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

マイク・ジョンソン，スーパースカラプロセッサ 18

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令の整列化およびマージ

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

S1 S2 S3 S4
S5
T1 T2 T3 T4

命令の整列化

4命令デコーダの様子

S1 S2 S3 S4
S5 T1 T2 T3
T4

命令のマージ

4命令デコーダの様子

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの改良，フィルタリング

Index

DataTagValid

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

Tag

Hit

0 0

PCが指し示す以前の命令をNOPに変更

成立分岐の後続命令をNOPに変更

20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC

21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

Index

DataTagValid

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

Tag

Hit

ラインサイズ 4ワード (16 Byte)

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

struct icache_line {
int valid;
int tag;
int data[4];

} iline;

class Icache {
main_memory *mem;
icache_line *buf;

public:
int size;
Icache(int, main_memory*);
int fetch(int, int*);

};

Icache::Icache(int icache_size, main_memory *m){
mem = m;
size = icache_size;
buf = (icache_line *)calloc(size, sizeof(iline));

}

int Icache::fetch(int pc, int *ir){
int index = (pc >> 4) % size;
int tag = (pc >> 4);
if(buf[index].valid && buf[index].tag==tag){ /** hit **/

for(int i=0; i<4; i++) ir[i]=buf[index].data[i];
return 1;

}
else{ /** cache miss **/

buf[index].valid = 1;
buf[index].tag = tag;
for(int i=0; i<4; i++){

int ir_t;
mem->ld_4byte(pc+4*i, &ir_t);
buf[index].data[i] = ir[i] = ir_t;

}
return 0; }

}

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スーパースカラプロセッサにおける
動的スケジューリング（アウトオブオーダ実行）

P8 := P3 x P5 (1)

P9 := P8 + 1 (2)

P10:= P5 + 1 (3)

P11:= P10 x P9 (4)

(1)

(2)

(3)

(4)

P8 := P3 x P5 (1)

P9 := P8 + 1 (2)

P10:= P5 + 1 (3)

P11:= P10 x P9 (4)

24

5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：
命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

25
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

26

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

