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プロセッサのマイクロアーキテクチャ

マルチサイクルプロセッサ

シングルサイクルプロセッサ

パイプライン

スカラープロセッサ

スーパースカラプロセッサ （インオーダ）

スーパースカラプロセッサ（アウトオブオーダ）
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パイプライン処理 (pipelining)とスカラプロセッサ

サイクル当たりの平均実行命令数，IPC (instructions per cycle) の上限は１

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

5段パイプラインの標準的なスカラプロセッサ
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

スーパースカラプロセッサと命令レベル並列性

複数のパイプラインを利用して IPC (instructions per cycle) を
1以上に引き上げる，複数の命令を並列に実行

n-way スーパースカラ

ハザードの積極的な解消，ストールの隠蔽が重要

n

2-way superscalar

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

5段パイプラインのインオーダ・スーパースカラプロセッサ
インタリーブ命令メモリ版

6MipsCore in-order SuperScalar 2011-12-02  17:00     ArchLab. TOKYO TECH
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スーパースカラプロセッサにおける
動的スケジューリング（アウトオブオーダ実行）

(1)  DIV.D F0, F2, F4
(2)  ADD.D F10, F0, F8
(3)  SUB.D F12, F8, F14

DIV.D とADD.Dの依存がパイプラインをストールさせ，SUB.D
命令の実行を阻害

SUB.D はパイプラインのどの命令にもデータ依存しない

プログラム順序に従って命令を実行するという制約を取り除く

ことで，この制限を解消
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アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：
命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド
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アウトオブオーダ実行プロセッサの命令パイプライン

Instruction 
Fetch Decode Rename Dispatch

Issue Register
Read Execute Commit

The Alpha 21264 Microprocessor Architecture
R. E. Kessler, E. J. McLellan, and D. A. Webb, Compaq Computer Corporation
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アウトオブオーダ実行プロセッサとフロントエンド

2011年 後学期

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

高いバンド幅の命令フェッチ

パイプラインにバブルを生じさせないためには，

条件分岐命令をフェッチした時に，次の３つを予測しな

ければならない．

フェッチしている命令が分岐かどうか

分岐方向

分岐先アドレス
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命令キャッシュの実装

Index

DataTagValid

31 30   . . .         13 12  11    . . .    4  3 2  1 0 Byte 
offset

Tag

Hit

ラインサイズ 4ワード (16 Byte)

12
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命令キャッシュの実装

struct icache_line {
int valid;
int tag;
int data[4];

} iline;

class Icache {
main_memory *mem;
icache_line *buf;

public:
int size;
Icache(int, main_memory*);
int fetch(data_t, data_t*);

};

Icache::Icache(int icache_size, main_memory *m){
mem = m;
size = icache_size;
buf  = (icache_line *)calloc(size, sizeof(iline));

}

int Icache::fetch(data_t pc, data_t *ir){
int index  = (pc >> 4) % size;
data_t tag = (pc >> 4);
if(buf[index].valid && buf[index].tag==tag){ /** hit **/

for(int i=0; i<4; i++) ir[i]=buf[index].data[i];
return 1; 

}
else{  /** cache miss **/

buf[index].valid = 1;
buf[index].tag   = tag;
for(int i=0; i<4; i++){

data_t ir_t;
mem->ld_4byte(pc+4*i, &ir_t);
buf[index].data[i] = ir[i] = ir_t;

}
return 0; }

}
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Branch Target Buffer (BTB)の実装

分岐成立の場合にのみ，分岐先アドレスを登録する．

Validビットは利用しなくてもよい．

Tag
Index

Branch TargetTag

31 30       . . .        13 12  11     . . .        2  1  0
Byte 
offset

Target Address

32

Hit
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Branch Target Buffer (BTB)の実装

struct btb_line {
int tag;
int data;

};

class BTB {
btb_line *buf;

public:
int size;
BTB(int);
void fetch(data_t, data_t*);
void regist(data_t, data_t);

};

BTB::BTB(int btb_size){
size = btb_size;
buf  = (btb_line *)calloc(size, sizeof(btb_line));

}

void BTB::fetch(data_t pc, data_t *target){
int index  = (pc >> 2) % size;
data_t tag = (pc >> 2);
if(buf[index].tag==tag) *target=buf[index].data;
else *target = 0;

}

void BTB::regist(data_t pc, data_t target){
int index  = (pc >> 2) % size;
data_t tag = (pc >> 2);
buf[index].tag  = tag;
buf[index].data = target;

}
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命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC
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Branch Target Buffer (BTB)の改良

Tag
Index

Branch TargetTag

31 30       . . .        13 12  11     . . .        2  1  0
Byte 
offset

Target Address

32

Hit

キャッシュラインに１つの分岐のみを許す

Branch Location
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命令キャッシュにおけるミスアラインメント

分岐命令S5の飛び先をT1とする．

- S1 S2 S3
S4 S5 - -

- T1 T2 T3
T4 - - -

分岐

ソースのキャッシュブロック１

ソースのキャッシュブロック２

ターゲットのキャッシュブロック１

ターゲットのキャッシュブロック２

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

マイク・ジョンソン，スーパースカラプロセッサ 18
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命令の整列化およびマージ

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

S1 S2 S3 S4
S5
T1 T2 T3 T4

命令の整列化

4命令デコーダの様子

S1 S2 S3 S4
S5 T1 T2 T3
T4

命令のマージ

4命令デコーダの様子
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命令キャッシュの改良，フィルタリング

Index

DataTagValid

31 30   . . .         13 12  11    . . .    4  3 2  1 0 Byte 
offset

Tag

Hit

0 0

PCが指し示す以前の命令をNOPに変更

成立分岐の後続命令をNOPに変更
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命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC
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命令キャッシュの実装

Index

DataTagValid

31 30   . . .         13 12  11    . . .    4  3 2  1 0 Byte 
offset

Tag

Hit

ラインサイズ 4ワード (16 Byte)
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命令キャッシュの実装

struct icache_line {
int valid;
int tag;
int data[4];

} iline;

class Icache {
main_memory *mem;
icache_line *buf;

public:
int size;
Icache(int, main_memory*);
int fetch(int, int*);

};

Icache::Icache(int icache_size, main_memory *m){
mem = m;
size = icache_size;
buf  = (icache_line *)calloc(size, sizeof(iline));

}

int Icache::fetch(int pc, int *ir){
int index  = (pc >> 4) % size;
int tag = (pc >> 4);
if(buf[index].valid && buf[index].tag==tag){ /** hit **/

for(int i=0; i<4; i++) ir[i]=buf[index].data[i];
return 1; 

}
else{  /** cache miss **/

buf[index].valid = 1;
buf[index].tag   = tag;
for(int i=0; i<4; i++){

int ir_t;
mem->ld_4byte(pc+4*i, &ir_t);
buf[index].data[i] = ir[i] = ir_t;

}
return 0; }

}
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スーパースカラプロセッサにおける
動的スケジューリング（アウトオブオーダ実行）

P8 := P3 x P5 (1)

P9 := P8 + 1 (2)

P10:= P5 + 1 (3)

P11:= P10 x P9 (4)

(1)

(2)

(3)

(4)

P8 := P3 x P5 (1)

P9 := P8 + 1 (2)

P10:= P5 + 1 (3)

P11:= P10 x P9 (4)
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アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：
命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド
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アナウンス

講義スライド，講義スケジュール
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