
1

1

計算機アーキテクチャ 第二 (O)

8. パイプライン制御とスーパーパイプライン

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2011年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

補足： MIPS R4000 パイプライン

64ビットのマイクロプロセッサ

整数パイプラインを８段とすることで，クロック周波数を向上させる．

100MHz / 150MHz (1991/10)

キャッシュアクセスの時間が厳しいため，ここに追加のパイプライン

を割り当てる．

深いパイプラインは，スーパーパイプラインとよばれることがある．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

R4000のステージ構成

IF ：命令フェッチの前半，PC の選択を行い、命令キャッシュアクセスを開始

IS ：命令フェッチの後半，命令キャッシュアクセスを完了

RF ：命令デコードとレジスタファイルアクセス、ハザードチェック、そして命令
キャッシュのヒット検出

EX: 実行

DF：データフェッチ、データキャッシュアクセスの前半

DS：データフェッチの後半、データキャッシュアクセスの完了

TC：タグのチェック、データキャッシュアクセスヒットの決定

WB：ロード演算とレジスタ-レジスタ間演算の結果をレジスタファイルに格納

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

20

Data

32

Hit

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS R4000: ２サイクルのロード遅延

データ値はDSステージで利用可能

TCステージでのタグ比較によりミスが判明すると，１サイクル後退する．

6

計算機アーキテクチャ 第二 (O)

スーパースカラプロセッサ(1)
分岐予測

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2011年 後学期

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)とスカラプロセッサ

サイクル当たりの平均実行命令数，IPC (instructions per cycle) の上限は１

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スーパースカラプロセッサと命令レベル並列性

複数のパイプラインを利用して IPC (instructions per cycle) を
1以上に引き上げる，複数の命令を並列に実行

n-way スーパースカラ

ハザードの積極的な解消，ストールの隠蔽が重要

n

2-way superscalar

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

Index

DataTagValid

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

Tag

Hit

ラインサイズ 4ワード (16 Byte)

9
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

struct icache_line {
int valid;
int tag;
int data[4];

} iline;

class Icache {
main_memory *mem;
icache_line *buf;

public:
int size;
Icache(int, main_memory*);
int fetch(int, int*);

};

Icache::Icache(int icache_size, main_memory *m){
mem = m;
size = icache_size;
buf = (icache_line *)calloc(size, sizeof(iline));

}

int Icache::fetch(int pc, int *ir){
int index = (pc >> 4) % size;
int tag = (pc >> 4);
if(buf[index].valid && buf[index].tag==tag){ /** hit **/

for(int i=0; i<4; i++) ir[i]=buf[index].data[i];
return 1;

}
else{ /** cache miss **/

buf[index].valid = 1;
buf[index].tag = tag;
for(int i=0; i<4; i++){

int ir_t;
mem->ld_4byte(pc+4*i, &ir_t);
buf[index].data[i] = ir[i] = ir_t;

}
return 0; }

}

10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインと制約ループ

IF ID/RR EX MEM WB

IF EX MEM WB

11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

高いバンド幅の命令フェッチ

パイプラインにバブルを生じさせないためには，

条件分岐命令をフェッチした時に，次の３つを予測しな

ければならない．

フェッチしている命令が分岐かどうか

分岐方向

分岐先アドレス

12

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

分岐方向の予測（分岐予測）

分岐予測

分岐方向
（成立／不成立）

プログラムカウンタ

分岐履歴など
の情報

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

投機処理と分岐方向の予測（分岐予測）

大雑把には５回に１回程度，分岐命令があらわれる．

制御依存関係

Start End

Start End

分岐命令

制御依存が確定した命令列 処理すべきかわかっていない命令列

予測が正しいとして投機的に処理している命令列

処理すべき機械命令の列

制御依存が確定した命令列

Processor

Processor

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

サンプルプログラム Vector Add

#define VSIZE 4
void vadd(long *A, long *B, long *C){

for(i=0; i<VSIZE; i++)
C[i] += (A[i] + B[i]);

}

制御フローグラフ

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False True

B1

B2

B3

i = 0

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

シンプルな分岐予測 Branch Always

Branch Always: 常に分岐が成立

すると予測する．

上の例では，予測成功率は

７５％，ミス率２５％

予測のためのメモリを必要としない．

予測とよぶほどのものではない．

B1 B2 B2 B2 B2 B3

B3 B3 B3 B2

処理すべき機械命令の列

True,
taken

i = 0

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False,
not taken

B1

B2

B3

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

Taken (1) Taken (1) Taken (1) Not Taken (0)

Taken(1),
Not Taken(0)

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

シンプルな分岐予測 ２ビットカウンタ方式

２ビットカウンタ方式
大域的な偏り，局所性の利用

２ビットカウンタの状態に応じて予測

予測のためのメモリは２ビット

状態の更新

0040d6c5 1
0040d6b8 1
0040d6bc 0
0040d6c5 0
0040d6df 0
0040d71f 0
0040d736 0
0040d7ab 0
0040d7cd 0
0040d7f9 0
0040d81e 1
0040d7f9 1
0040d81e 1
0040d7f9 0
0040d81e 0
0040d83d 0
0040d86d 1
0040d86d 1
0040d86d 1
0040d86d 1
0040d86d 1
0040d86d 1

0040d89c 1
0040d89c 1
0040d89c 1
0040d89c 1
0040d89c 1
0040d89c 1
0040d89c 0
0040d8a2 0
0040d8c0 1
0040d8c4 0
0040d8cd 1
0040d8c0 0
0040d8c4 1
0040d8cd 1
0040d8c0 1
0040d8c4 0
0040d8cd 0
0040d8e7 0
0040d923 1
0040d7ab 0
0040d7cd 0
0040d7f9 0

トレースデータ
（分岐アドレス，分岐結果）

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken

2 bit

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

サンプルプログラム Vector Add

#define VSIZE 4
void vadd(long *A, long *B, long *C){

for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}

制御フローグラフ

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

Taken(1),
Not Taken(0)

0 1 0 1 0 1 0 0

18

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Bimodal (ISCA 1981)

Pattern History Table (PHT)
Program
Counter

…

2n entry

Predictionn

分岐アドレス（プログラムカウンタ）毎に履歴を切り替える

分岐アドレスによりパターン履歴表（ＰＨＴ）のインデックスを作成

パターン履歴表は２ビットカウンタの配列．

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

0 0 0 1
Taken(1),
Not Taken(0)

0 1 0 1 0 1 0 0
BE: 0 1 0 1 0 1 0 0
B2: 0 1 0 1 0 1 0 0

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

シンプルな分岐予測の予測精度（予測ミス率）

0

10

20

30

40

50

60

70

80

90

100

F
P

-
1

F
P

-
2

F
P

-
3

F
P

-
4

F
P

-
5

IN
T
-
1

IN
T
-
2

IN
T
-
3

IN
T
-
4

IN
T
-
5

M
M

-
1

M
M

-
2

M
M

-
3

M
M

-
4

M
M

-
5

S
E
R

V
-
1

S
E
R

V
-
2

S
E
R

V
-
3

S
E
R

V
-
4

S
E
R

V
-
5

A
ve

ra
ge

M
is

p
re

di
c
ti
o
n
s

R
at

e
 (

%
)

Branch Always

2bit counter

Bimodal

8KB hardware budget

Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.
20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

分岐履歴

1110 ?
11101 ?
111011 ?
1110111 ?
11101110 ?

B2の分岐履歴

B1 B2 B2 B2 B2 B3

B3 B3 B3 B2

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

1 1 1 0

Taken(1),
Not Taken(0)

True,
taken

i = 0

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False,
not taken

B1

B2

B3

21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

ローカル，グローバル分岐履歴

1110 ?
11101 ?
111011 ?
1110111 ?
11101110 ?

B2の分岐履歴

0000 ?
00000 ?
000000 ?
0000000 ?
00000000 ?

BEの分岐履歴

ローカル分岐履歴 ローカル分岐履歴

010101000 ?
B2とBEの分岐履歴

グローバル分岐履歴

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

0 0 0 1
Taken(1),
Not Taken(0)

0 1 0 1 0 1 0 0
BE: 0 1 0 1 0 1 0 0
B2: 0 1 0 1 0 1 0 0

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshare (TR-DEC 1993)

Program
Counter

XOR

n

n m

グローバル分岐履歴と分岐アドレスとの排他的論理和によりパターン履歴表

へのインデックスを作成

パターン履歴表は２ビット飽和型カウンタの配列で，選択された２ビットカウンタの

値により分岐方向を予測（bimodalと同じ）

分岐結果を用いて，予測に利用したカウンタを更新

Pattern History Table (PHT)

…

2n entry

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

010101000 （シフトレジスタ）

Branch History
Register (BHR)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshareの実装

class Gshare {
int bhr;
int *buf;

public:
int size;
Gshare(int);
int predict(int);
void update(int, int);

};

Gshare::Gshare(int bpred_size){
size = bpred_size;
buf = (data_t *)calloc(size, sizeof(data_t));
for(int i=0; i<size; i++) buf[i] = 2;

}

int Gshare::predict(int pc){
int index = ((pc >> 2) ^ bhr) % size;
return (buf[index]>1);

}

void Gshare::update(int pc, int taken){
int index = ((pc >> 2) ^ bhr) % size;
if(taken!=0 && buf[index]<3) buf[index]++;
if(taken==0 && buf[index]>0) buf[index]--;
bhr = (bhr << 1) | taken;

}

24

5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Exercise

25

gshare の実装

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshareの実装

class Gshare {
int bhr;
int *buf;

public:
int size;
Gshare(int);
int predict(int);
void update(int, int);

};

Gshare::Gshare(int bpred_size){
size = bpred_size;
buf = (data_t *)calloc(size, sizeof(data_t));
for(int i=0; i<size; i++) buf[i] = 2;

}

int Gshare::predict(int pc){
int index = ((pc >> 2) ^ bhr) % size;
return (buf[index]>1);

}

void Gshare::update(int pc, int taken){
int index = ((pc >> 2) ^ bhr) % size;
if(taken!=0 && buf[index]<3) buf[index]++;
if(taken==0 && buf[index]>0) buf[index]--;
bhr = (bhr << 1) | taken;

}

26

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshareの実装

class Gshare {
int bhr;
int *buf;

public:
int size;
Gshare(int);
int predict(int);
void update(int, int);

};

Gshare::Gshare(int bpred_size){
size = bpred_size;
buf = (data_t *)calloc(size, sizeof(data_t));
for(int i=0; i<size; i++) buf[i] = 2;

}

int Gshare::predict(int pc){
int index = ((pc >> 2) ^ bhr) % size;
return (buf[index]>1);

}

void Gshare::update(int pc, int taken){
int index = ((pc >> 2) ^ bhr) % size;
if(taken!=0 && buf[index]<3) buf[index]++;
if(taken==0 && buf[index]>0) buf[index]--;
bhr = (bhr << 1) | taken;

}

27
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

予測精度（予測ミス率）

0

5

10

15

20

25

30

35

40

F
P

-
1

F
P

-
2

F
P

-
3

F
P

-
4

F
P

-
5

IN
T
-
1

IN
T
-
2

IN
T
-
3

IN
T
-
4

IN
T
-
5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E
R

V
-
1

S
E
R

V
-
2

S
E
R

V
-
3

S
E
R

V
-
4

S
E
R

V
-
5

A
ve

ra
ge

M
is

p
re

di
c
ti
o
n
s

R
at

e
 (

%
)

Bimodal

Gshare

Bimode

8KB hardware budget

Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.
28

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
29

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

