
1

1

計算機アーキテクチャ 第二 (O)

5. パイプライン処理

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2011年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ハザード (hazard)

構造ハザード (structural hazard)
オーバラップ実行する命令の組み合わせをハードウェアがサ

ポートしていない場合．

資源不足により生じる．

データ・ハザード(data hazard)
データの受け渡しの制約によって生じるハザード

制御ハザード(control hazard)
分岐命令，ジャンプ命令によって生じるハザード

命令を適切なサイクルで実行できないような状況が存在す
る．これをハザードと呼ぶ．

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPSの基本的な５つのステップ（ステージ）

IFステージ

メモリから命令をフェッチする．

IDステージ

命令をデコードしながら，レジスタを読み出す．

分岐命令である可能性を考慮し，読み出されたレジスタ

の間で一致比較を行う．必要であれば、命令のオフセット

フィールドを符号拡張し，インクリメントされたPCに符号拡

張されたオフセットを足し合わせて分岐先のアドレスを計

算する．条件が成立した場合には分岐先アドレスをPCに
セットして，このステージで分岐命令は完了する．

3
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（パイプライン処理）

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

静的に採用できる制御ハザードの対処 （演習）

戦略１

分岐方向が判明するまで分岐命令の後続命令を止める．

ＩＤステージで分岐命令が完了することに注意．

5
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

静的に採用できる制御ハザードの対処

戦略１

分岐方向が判明するまで分岐命令の後続命令を止める．

ＩＤステージで分岐命令が完了することに注意．

分岐命令の出現毎に１サイクルのストールが発生する．

6

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略２： predicted-not-taken方式 (Exercise)

すべての分岐命令を not taken （不成立）として処理を

進める．

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略２： predicted-not-taken方式

すべての分岐命令を not taken （不成立）として処理を

進める．

分岐結果が不成立であれば，ペナルティは生じない．

分岐結果が成立であれば，１サイクルのペナルティ

8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略３： predicted-taken方式

すべての分岐命令を taken （成立）として処理を進める．

ＩＤステージが終了して，分岐と判定するとすぐに分岐成

立として処理を継続．

今考えているパイプライン構成では，この方式の利点は

ない．

9
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

分岐命令の後続の幾つかの命令を実行した後に，

分岐する．

１サイクルの遅延を持つ命令実行順は次の通り．

分岐命令を実行

分岐命令の次アドレスの命令を実行

分岐成立では，飛び先アドレスの命令を実行（不成立では，分岐

命令の次の次のアドレスの命令を実行）

10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

分岐命令の後続の幾つかの命令を実行した後に，分岐

する．

11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

分岐命令の後続の幾つかの命令を実行した後に，分岐

する．分岐命令によるストールは生じない．

初期のRISCプロセッサにて利用された．

12

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

遅延分岐スロットのスケジューリング

Nop命令

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインの実行の困難さ

例外への対処

I/O デバイスからの要求

ユーザプログラムからのOSサービスの呼び出し

命令実行のトレース生成

ブレークポイント（プログラマの要求による割り込み）

整数演算命令のオーバーフロー

FP演算命令の不規則さ

ページフォールト（メインメモリ内に無い場合）

整列されていないメモリアクセス（整列が必要な場合）

メモリ保護違反

未定義あるいは未実装命令の使用

ハードウェア異常故障

電源異常

命令セットの複雑さ

複数サイクル処理の扱い

14

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインの実行の困難さ：例外への対処

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインの実行の困難さ：例外への対処

1. 次の命令フェッチ時に，トラップ命令をパイプ

ラインに挿入

2. トラップ命令が実行されるまで，フォールトし

た命令とパイプライン中でそれに後続してい

る命令による書き込みをすべて取りやめる．

例外を生じた命令からトラップ命令直前のパ

イプライン中の命令に対して，パイプライン

ラッチにゼロを書き込むことで実現する．

3. OSの例外ハンドラのルーチンが制御を獲得

したあとで，そのルーチンはフォールトした

命令のPCを直ちに保存する．

この値は，後ほど例外から戻る時に使用．

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサの命令パイプラインの例

POWER4 System Microarchitecture, IBM Journal

The Microarchitecture of the Pentium® 4, Intel Technical Report

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインの段数

パイプラインの段数はどこまで増やすことができる？

18

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Increasing Processor
Performance by Implementing
Deeper Pipelines

Eric Sprangle , Doug Carmean
Pentium Processor Architecture Group,
Intel Corporation
ISCA-2002 pp.25-34

Session 1 – Processor Pipelines

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

背景と目的

プロセッサの動作周波数の決定はプロセッサ設計者の

直面する本質的な課題となっている。

パイプラインが深くなると、設計の複雑さと工程は劇的に

増加する。

パイプラインの深さとキャッシュサイズの関数として、プロ

セッサ性能を予測するモデルを構築し、シミュレーション

により性能を評価する。

Pentium 4プロセッサをベースラインとして、深いパイプラ

インが性能向上につながることを示す。

20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Simulated 2GHz Pentium 4 like processor config.

Skeleton という実行駆動のシミュレータを用いて評価する。

21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Simulated Benchmark Suites

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインのオーバヘッド

Conservative ASIC design
Clock skew + jitter = 51ps
Standard 0.18um process, flop overhead is 3 FO4 = 75ps
Pipeline overhead = 51ps + 75ps = 125ps

Custom design
Most of clock skew and jitter overhead can be hidden.
Pipeline overhead = 75ps

Extreme custom design
Sub-50ps at the cost of a much larger design cost

Pentium 4 overhead
Pipeline overhead = 90ps
Use 90ps as a baseline overhead time

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン段数を変化させた時の
動作周波数、IPC、性能の評価結果

パイプラインが52段で、動作周波数が２倍になるまで性能が向上

５２段

24

5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン段数とオーバヘッドを変化させた時の
性能の評価結果

評価には、パイプライン段数に影響を受けず一定のオーバヘッドを想定

2GHz のパイプラインピッチ 500ps、Pentium 4のオーバヘッドは 90ps

オーバヘッドを小さくすることで、パイプラインはより深くなる。

25
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン段数とキャッシュサイズを変化させた
時の性能の評価結果

キャッシュサイズを変化させることで相対性能は変化するが、最適な

パイプライン段数はほとんど変化しない。

26

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
27

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

