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Sample program

#include <stdio.h>

int main(){
int i;
int sum = 0;

for(i=1; i<=100; i++)
sum += i;

return sum;
}

遅延分岐
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Sample program

# Makefile
all:

mipsel-linux-gcc -O0 -S main.c -o main_opt0.s
mipsel-linux-gcc -O1 -S main.c -o main_opt1.s
mipsel-linux-gcc -O2 -S main.c -o main_opt2.s
mipsel-linux-gcc -O3 -S main.c -o main_opt3.s
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CISC - Complex Instruction Set Computer

CISC philosophy
! fixed instruction lengths
! load-store instruction sets
! limited addressing modes
! limited operations

DEC VAX11 Intel 80x86, …
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IA - 32

1978:  The Intel 8086 is announced (16 bit architecture)
1980:  The 8087 floating point coprocessor is added
1982:  The 80286 increases address space to 24 bits, +instructions
1985:  The 80386 extends to 32 bits, new addressing modes
1989-1995:  The 80486, Pentium, Pentium Pro add a few  instructions

(mostly designed for higher performance)
1997:  57 new “MMX” instructions are added, Pentium II
1999:  The Pentium III added another 70 instructions (SSE)
2001:  Another 144 instructions (SSE2)
2003:  AMD extends the architecture to increase address space to 64 bits,

widens all registers to 64 bits and other changes (AMD64)
2004:  Intel capitulates and embraces AMD64 (calls it EM64T) and adds

more media extensions

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love” 
6
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IA-32 Overview

Complexity:
Instructions from 1 to 17 bytes long
one operand must act as both a source and destination
one operand can come from memory
complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”

Saving grace:
the most frequently used instructions are not too difficult to build
compilers avoid the portions of the architecture that are slow
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IA-32 Registers and Data Addressing

Registers in the 32-bit subset that originated with 80386

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use
031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS
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IA-32 Register Restrictions

Registers are not “general purpose” – note the 
restrictions below
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IA-32 Typical Instructions

Four major types of integer instructions:
Data movement including move, push, pop
Arithmetic and logical (destination register or memory)
Control flow (use of condition codes / flags )
String instructions, including string move and string compare
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IA-32 instruction Formats

Typical formats:  (notice the different lengths)
a. JE EIP + displacement

b. CALL

c. MOV      EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacementr/m
Postbyte

Offset

DisplacementCondi-
tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8
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VAX CALLS命令

1. 必要ならばスタックを整列化する．

2. 引数の個数をスタックにプッシュする．

3. スタック上の手続き呼出しマスクによって指示されたレジスタの退避を
おこなう．マスクは呼び出される手続きのコード内に保持されている．
これによって分割コンパイルの際にも，被呼出側退避を呼出し側で実
行できるようになる．

4. リターン・アドレスをスタックにプッシュし，現在の活動記録に対するス
タック・トップとスタック・ベースをプッシュする．

5. トラップ・イネーブルを既知の状態にセットする条件コードをクリアする．

6. ステータス情報のための語とゼロの値を持つ語をスタックにプッシュす
る．

7. 2つのスタック・ポインタを呼び出された手続きで利用できるように更新
する．

8. 呼び出された手続きの最初の命令に分岐する．
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RISC  vs. CISC

Section B.2
Use general-purpose registers with a load-store architecture.

落とし穴

高級言語構造を特別に支援することを目的に，高レベルの命令

セットを設計すること．

誤信

欠点のあるアーキテクチャは成功しない．

Computer Architecture A Quantitative Approach Fourth Edition
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RISCプロセッサとパイプライン処理
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プロセッサの構成要素（１）
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プロセッサの構成要素（２）
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プロセッサのデータパス（シングル・サイクル）

op           rs            rt            rd shamt       funct
add $t0, $s1, $s2    [ add $8, $17, $18 ]
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スキャネットシート

氏名，学籍番号，

学籍番号マーク欄(右詰で)

年 月 日 Arch II
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Exercise

addi $t0, $t1, -1 [ addi $8, $9, -1 ] 

op           rs           rt                16 bit immediate I  format
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プロセッサのデータパス（シングル・サイクル）

op           rs            rt            rd shamt       funct
add $t0, $s1, $s2    [ add $8, $17, $18 ]
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プロセッサのデータパス（シングル・サイクル）

addi $sp, $sp, 4 [ addi $29, $29, 4 ] 

op           rs           rt                16 bit immediate I  format

PC = 0x20
$29 = 7

rs

rt

rd
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プロセッサのデータパス（シングル・サイクル）

lw $t0, 8($s2)    [ lw $8, 8($18) ]

op           rs           rt                16 bit immediate I  format

PC = 0x24
$18 = 0x400
mem[0x408] = 3

rs

rt

rd
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プロセッサのデータパス（シングル・サイクル）

sw $t0, 24($s2)    [ sw $8, 24($18) ]

op           rs           rt                16 bit immediate I  format

rs

rt

rd
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プロセッサのデータパス（シングル・サイクル） Exercise

beq $s0, $s1, Label    [beq $16, $17, Label ]

op           rs           rt                16 bit immediate I  format

PC = 0x24
$16 = 8
$17 = 8
Label = 0x30

rs

rt

rd

24
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MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1 
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op            rs             rt                 16 bit offset

How is the branch destination address specified?
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Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset
which register?  Instruction Address Register  (the PC)

its use is automatically implied by instruction
PC gets updated (PC+4) during the fetch cycle so 
that it holds the address of the next instruction

limits the branch distance to -215 to +215-1 instructions from the (instruction 
after the) branch instruction, but most branches are local anyway

PC
Add

32

32 32
32

32

offset

16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

26
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プロセッサのデータパス（シングル・サイクル）

one clock period
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パイプライン処理 (pipelining)
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パイプライン処理 (pipelining)

29
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

ステージ
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パイプライン処理 (pipelining)
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パイプライン処理 (pipelining)
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MIPSの基本的な５つのステップ（ステージ）

IF (Instruction fetch)ステージ

メモリから命令をフェッチする．

ID (Instruction decode and register file read) 
ステージ

命令をデコードしながら，レジスタを読み出す．

EX (Execution or address calculation) ステージ

命令操作の実行またはアドレスの生成を行う．

MEM (Data memory access) ステージ

データ・メモリ中のオペランドにアクセスする．

WB (Write back) ステージ

結果をレジスタに書き込む．
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パイプライン処理 (pipelining)
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パイプライン処理 (pipelining)
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パイプラインによる速度向上

パイプラインステージの数（段数）: n
実行する命令の数: s
パイプライン化されたプロセッサのクロックを単位時間と

する．

全命令が終了するまでの理想的なサイクル数

n + s – 1

パイプラインを利用しないシングルサイクルのプロセッサ

n * s

36
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