
1

1

計算機アーキテクチャ 第二 (O)

3． RISC vs. CISC， RISCプロセッサ

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2010年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Sample program

#include <stdio.h>

int main(){
int i;
int sum = 0;

for(i=1; i<=100; i++)
sum += i;

return sum;
}

遅延分岐

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Sample program

Makefile
all:

mipsel-linux-gcc -O0 -S main.c -o main_opt0.s
mipsel-linux-gcc -O1 -S main.c -o main_opt1.s
mipsel-linux-gcc -O2 -S main.c -o main_opt2.s
mipsel-linux-gcc -O3 -S main.c -o main_opt3.s

3 4

計算機アーキテクチャ 第二 (O)

２． RISC vs. CISC， RISCプロセッサ

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2010年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
55

CISC - Complex Instruction Set Computer

CISC philosophy
! fixed instruction lengths
! load-store instruction sets
! limited addressing modes
! limited operations

DEC VAX11 Intel 80x86, …

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

IA - 32

1978: The Intel 8086 is announced (16 bit architecture)
1980: The 8087 floating point coprocessor is added
1982: The 80286 increases address space to 24 bits, +instructions
1985: The 80386 extends to 32 bits, new addressing modes
1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
1997: 57 new “MMX” instructions are added, Pentium II
1999: The Pentium III added another 70 instructions (SSE)
2001: Another 144 instructions (SSE2)
2003: AMD extends the architecture to increase address space to 64 bits,

widens all registers to 64 bits and other changes (AMD64)
2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds

more media extensions

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”
6

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

IA-32 Overview

Complexity:
Instructions from 1 to 17 bytes long
one operand must act as both a source and destination
one operand can come from memory
complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”

Saving grace:
the most frequently used instructions are not too difficult to build
compilers avoid the portions of the architecture that are slow

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

8

IA-32 Registers and Data Addressing

Registers in the 32-bit subset that originated with 80386

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use
031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
9

IA-32 Register Restrictions

Registers are not “general purpose” – note the
restrictions below

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
10

IA-32 Typical Instructions

Four major types of integer instructions:
Data movement including move, push, pop
Arithmetic and logical (destination register or memory)
Control flow (use of condition codes / flags)
String instructions, including string move and string compare

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
11

IA-32 instruction Formats

Typical formats: (notice the different lengths)
a. JE EIP + displacement

b. CALL

c. MOV EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacementr/m
Postbyte

Offset

DisplacementCondi-
tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
12

VAX CALLS命令

1. 必要ならばスタックを整列化する．

2. 引数の個数をスタックにプッシュする．

3. スタック上の手続き呼出しマスクによって指示されたレジスタの退避を
おこなう．マスクは呼び出される手続きのコード内に保持されている．
これによって分割コンパイルの際にも，被呼出側退避を呼出し側で実
行できるようになる．

4. リターン・アドレスをスタックにプッシュし，現在の活動記録に対するス
タック・トップとスタック・ベースをプッシュする．

5. トラップ・イネーブルを既知の状態にセットする条件コードをクリアする．

6. ステータス情報のための語とゼロの値を持つ語をスタックにプッシュす
る．

7. 2つのスタック・ポインタを呼び出された手続きで利用できるように更新
する．

8. 呼び出された手続きの最初の命令に分岐する．

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
13

RISC vs. CISC

Section B.2
Use general-purpose registers with a load-store architecture.

落とし穴

高級言語構造を特別に支援することを目的に，高レベルの命令

セットを設計すること．

誤信

欠点のあるアーキテクチャは成功しない．

Computer Architecture A Quantitative Approach Fourth Edition

14

計算機アーキテクチャ 第二 (O)

RISCプロセッサとパイプライン処理

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサの構成要素（１）

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサの構成要素（２）

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル）

op rs rt rd shamt funct
add $t0, $s1, $s2 [add $8, $17, $18]

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スキャネットシート

氏名，学籍番号，

学籍番号マーク欄(右詰で)

年 月 日 Arch II

18

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Exercise

addi $t0, $t1, -1 [addi $8, $9, -1]

op rs rt 16 bit immediate I format

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル）

op rs rt rd shamt funct
add $t0, $s1, $s2 [add $8, $17, $18]

20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル）

addi $sp, $sp, 4 [addi $29, $29, 4]

op rs rt 16 bit immediate I format

PC = 0x20
$29 = 7

rs

rt

rd

21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル）

lw $t0, 8($s2) [lw $8, 8($18)]

op rs rt 16 bit immediate I format

PC = 0x24
$18 = 0x400
mem[0x408] = 3

rs

rt

rd

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル）

sw $t0, 24($s2) [sw $8, 24($18)]

op rs rt 16 bit immediate I format

rs

rt

rd

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル） Exercise

beq $s0, $s1, Label [beq $16, $17, Label]

op rs rt 16 bit immediate I format

PC = 0x24
$16 = 8
$17 = 8
Label = 0x30

rs

rt

rd

24

5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
25

MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op rs rt 16 bit offset

How is the branch destination address specified?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset
which register? Instruction Address Register (the PC)

its use is automatically implied by instruction
PC gets updated (PC+4) during the fetch cycle so
that it holds the address of the next instruction

limits the branch distance to -215 to +215-1 instructions from the (instruction
after the) branch instruction, but most branches are local anyway

PC
Add

32

32 32
32

32

offset

16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

26

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル）

one clock period

27
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

28

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

29
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

ステージ

30

6

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

31
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

32

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPSの基本的な５つのステップ（ステージ）

IF (Instruction fetch)ステージ

メモリから命令をフェッチする．

ID (Instruction decode and register file read)
ステージ

命令をデコードしながら，レジスタを読み出す．

EX (Execution or address calculation) ステージ

命令操作の実行またはアドレスの生成を行う．

MEM (Data memory access) ステージ

データ・メモリ中のオペランドにアクセスする．

WB (Write back) ステージ

結果をレジスタに書き込む．

33
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

34

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプライン処理 (pipelining)

35
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインによる速度向上

パイプラインステージの数（段数）: n
実行する命令の数: s
パイプライン化されたプロセッサのクロックを単位時間と

する．

全命令が終了するまでの理想的なサイクル数

n + s – 1

パイプラインを利用しないシングルサイクルのプロセッサ

n * s

36

7

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
3737

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

