
1

11

計算機アーキテクチャ 第二 (O)

１．導入

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2011年 後学期2011-10-03

2

関連科目・履修条件等

４学期： 計算機論理設計
計算機を構成するプロセッサとその制御部に関し，具体構成と設計の原
理を講義する．特に，レジスタトランスファ言語を用いて計算機の内部動

作を記述し，簡単な計算機の設計を行う．

５学期： 計算機アーキテクチャ第一
CPU を含め，メモリ，チャネル，入出力，通信制御，等の計算機システム

を構成する各種装置について，その役割，動作原理について講義する．

６学期： 計算機アーキテクチャ第二
最新の計算機システムに採り入れられている高速プロセッサ制御方式，
構成方式について述べ、これらの技術を駆使したパイプラインプロセッサ，
スーパコンピュータ，超並列計算機，データフロー計算機，等の先端的な
アーキテクチャについて講義する．

計算機アーキテクチャ特論（大学院）

3

講義項目

コンピュータの性能

RISC vs CISC
パイプライン制御

ハザードとスケジューリング

スーパースカラ，スーパーパイプライン，VLIW

ベクトル・プロセッサ

データフロー

マルチプロセッサ，マルチコアシステム

レポート，演習，期末試験により評価

4

参考書（１）

コンピュータの構成と設計 第
３版
パターソン＆ヘネシー
（成田光彰 訳）、
日経ＢＰ社、2006

55

参考書（２）

コンピュータアーキテクチャ
定量的アプローチ 第4版,
翔泳社

Computer Architecture,
Fourth Edition: A
Quantitative Approach,
Fourth Edition

Publisher: Morgan
Kaufmann; 4 edition
(September 13, 2006)
ISBN-10: 0123704901
ISBN-13: 978-0123704900

2009年 前学期 TOKYO TECH

6

計算機アーキテクチャ 第一 (E)

計算機システムの基本構成

2

7

計算機（デスクトップコンピュータ）

ディスプレイ
（モニタ）

コンピュータ

CPU
8

マイクロプロセッサ，CPU

9

メモリ
DRAM (dynamic random access memory)

10

ディスク，磁気ディスク

11

グラフィックカード

12

ネットワークカード

3

13

マザーボード

14

計算機

15

補足： クラスタ型（並列）計算機

16

計算機アーキテクチャとは？

アーキテクチャ
Architecture

計算機アーキテクチャ
Computer Architecture

17

アーキテクチャ（建築）
Architecture

世界最大のクフ王のピラミッド
1個約2.5tのブロックを 230～250万 個
積み重ねて造られている。

写真は計算機アーキテクチャのホームページから http://www.cs.wisc.edu/arch/www/

パルテノン神殿

18

計算機アーキテクチャ

What's Computer Architecture?

Computer Architecture is the science and art
of selecting and interconnecting hardware
components to create computers that meet
functional, performance and cost goals.
Computer architecture is not about using
computers to design buildings.

計算機アーキテクチャのホームページから http://www.cs.wisc.edu/arch/www/

4

19

コンピュータ（ハードウェア）の古典的な要素

出力制御

データパス

記憶

入力

出力

プロセッサ

コンピュータ

インタフェース （命令セットアーキテクチャ）

コンパイラ

性能の評価

2020

計算機アーキテクチャ 第二 (O)

RISC vs. CISC
RISC命令セットの例とその動作

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2121

RISC - Reduced Instruction Set Computer

RISC philosophy
fixed instruction lengths
load-store instruction sets
limited addressing modes
limited operations

Sun SPARC, HP PA-RISC, IBM PowerPC, Compaq
Alpha, MIPS, …

Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability,

memory space (embedded systems)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2222

MIPS R3000 Instruction Set Architecture (ISA)

Instruction Categories
Computational
Load/Store
Jump and Branch
Floating Point

coprocessor

Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2323

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination ← source1 op source2

Operand order is fixed (destination first)
Those operands are all contained in the datapath’s
register file ($t0,$s1,$s2) – indicated by $

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2424

MIPS Register Convention,
ABI (Application Binary Interface)

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2525

Instructions, like registers and words of data, are 32
bits long
Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
26

演習

f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリケ

ーション・コードはどうなるか．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
27

演習 （参考書 48ページ）

f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリケ

ーション・コードはどうなるか．

add $t0, $s1, $s2 # $t0 = (g + h)
add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2828

Load/Store Instruction Format (I format):
lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit offset
Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2929

MIPS Memory Access Instructions

MIPS has two basic data transfer instructions for
accessing memory
lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

The data is loaded into (lw) or stored from (sw) a
register in the register file – a 5 bit address
The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

A 16-bit field meaning access is limited to memory locations
within a region of ±213 or 8,192 words (±215 or 32,768 bytes) of
the address in the base register
Note that the offset can be positive or negative

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
30

演習

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

6

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
31

演習 （参考書 50ページ）

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $s1, $s2, $t0 # g = h + $t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
32

演習

A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
33

演習 （参考書 51ページ）

A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数 h にレジスタ $s2 を割り付ける．さらに配列の開始ア

ドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
3434

MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op rs rt 16 bit offset

How is the branch destination address specified?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
3535

We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt
Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0

Instruction format (R format):

More Branch Instructions

op rs rt rd funct

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
3636

More Branch Instructions, Con’t

Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions

less than blt $s1, $s2, Label

less than or equal to ble $s1, $s2, Label

greater than bgt $s1, $s2, Label

great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

Its why the assembler needs a reserved register ($at)

7

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
3737

MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

Instruction Format (J Format):

op 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
3838

Aside: Branching Far Away

What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

beq $s0, $s1, L1

becomes
bne $s0, $s1, L2
j L1

L2:

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
3939

MIPS procedure call instruction:
jal ProcedureAddress #jump and link

Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return
Machine format (J format):

Then can do procedure return with a
jr $ra #return

Instruction format (R format):

Instructions for Accessing Procedures

op 26 bit address

op rs funct

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
4040

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

Small constants are used often in typical code
Possible approaches?

put “typical constants” in memory and load them
create hard-wired registers (like $zero) for constants like 1
have special instructions that contain constants !

The constant is kept inside the instruction itself!
Immediate format limits values to the range +215–1 to -215

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
4141

MIPS ISA So Far

Category Instr Op Code Example Meaning

Arithmetic
(R & I
format)

add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6

or immediate 13 ori $s1, $s2, 6 $s1 = $s2 v 6

Data Transfer
(I format)

load word 35 lw $s1, 24($s2) $s1 = Memory($s2+24)

store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1

load byte 32 lb $s1, 25($s2) $s1 = Memory($s2+25)

store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1

load upper imm 15 lui $s1, 6 $s1 = 6 * 216

Cond. Branch
(I & R
format)

br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L

br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) go to L

set on less than 0 and 42 slt $s1, $s2, $s3 if ($s2<$s3) $s1=1 else
$s1=0

set on less than
immediate

10 slti $s1, $s2, 6 if ($s2<6) $s1=1 else
$s1=0

Uncond.
Jump (J &
R format)

jump 2 j 2500 go to 10000

jump register 0 and 8 jr $t1 go to $t1

jump and link 3 jal 2500 go to 10000; $ra=PC+4
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

4242

MIPS Register Convention,
ABI (Application Binary Interface)

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
43

ABI Sample

int simple_add(int a,int b)

{

return a + b;

}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
44

ABI Sample

int simple_add(int a,int b)

{

return a + b;

}

simple_add:

add $v0, $a0, $a1 #

jr $ra # return

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
45

スキャネットシート

氏名，学籍番号，

学籍番号マーク欄(右詰で)

年 月 日 Arch II

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
46

Exercise

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
47

Exercise 1
swap:

add $t1, $a1, $a1 #

add $t1, $t1, $t1 # $t1 = k * 4;

add $t1, $a0, $t1 # $t1 = &v[k];

lw $t0, 0($t1) # $t0 = v[k];

lw #

sw #

sw #

jr $ra # return

sll $t1, $a1, 2

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
484848

CISC - Complex Instruction Set Computer

CISC philosophy
! fixed instruction lengths
! load-store instruction sets
! limited addressing modes
! limited operations

DEC VAX11 Intel 80x86, …

9

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
4949

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

MIPS/SPIM Reference Cardは次回も利用します．

