2011-10-03 20114 R¥H

g HERTETTr RSO

1. 8BA

AREREREIFARE HFHEIFER
Hi# = kise _at_ cs.titech.ac.jp
S321#%E AIEH 5, 68 13:20—14:50

3 EEME-BEXHF

 AZHL: STERRIERGT
- EHEHEERT 70ty Y EZOHEIICEL, EAEREREOR
BEHEET D BT, LORINSVRI7ZEEEAVTHERONEE
fEERRL, BEAEEROREETS.
« 528 HEET7T—FTOFVvE—
= CPUZEE®, AEY, Frril, AN, BIEFIE, FOHERRTL
FERTHERBEBCOVT, TOEE, BEREBISOVTHESRT .
= 6FH: SHERT —FTIOFVYES
= BFOHE#HIATLACRYANSA TSGR Oy Y HIEAR,
WRARICOVNTRA, ChsORMEERHELIZ/ A TS50 Ty,

R—/RavEa—%, BEFIEEE FT-4O0—E# FOLiHT
T—FTFOFvIIOVWTHEETS.

» FRET T OF R (KER)

o HERE

m OVEa1—S2DMHRE
m RISC vs CISC
n AT
B NF—RERFT a1y
B R—/8—RH5, R—/8—’(F542, VLIW
n RN TOEyy
m T—470—
m YILFTAtEYY, TILFATIRT L

LR—b, JEE, BRHRICKYEHE

:h SEEQ)

gl |
AVEL—SDOERERET 8 ERs
3fR tRkeExET
IB—Y Y AR —
(BHE}xE R).
HiZBP%t. 2006

A= B —
]

:h SEE(2)

EEMTTO—F F4hR,
Wikt
= Computer Architecture,

Fourth Edition: A

Quantitative Approach,

Fourth Edition

= Publisher: Morgan
Kaufmann; 4 edition
(September 13, 2006)

= ISBN-10: 0123704901

= ISBN-13: 978-0123704900

2009% HiI%:4 TOKYO TECH

HEBT—%70F v F— ()

FEB AT LOEKRERN

* HE#(TRIMTAVEL—E)

avEa—4

* <4487 0+vH, CPU

AE!)
‘ DRAM (dynamic random access memory)

10

12

i TH—R—K

13

14

* R VIRZE(I5) FHEH

15

* HEMT—XTIFVvEE?

Architecture

 HEWT—FTOTFY
Computer Architecture

16

T—FTOFv (BE)

* Architecture

ISIVT PR

HRFRDITENESIYF
1E#2.5tD T AvH%E 230~2507 f&@
HHERTESN TS,

BHIIHEBT —FTIFvDR—LR—HS http://www.cs.wisc.edu/arch/www/ 17

* AEBT—FTIFY

What's Computer Architecture?

Computer Architecture is the science and art
of selecting and interconnecting hardware
components to create computers that meet
functional, performance and cost goals.
Computer architecture is not about using
computers to design buildings.

HEBT—FTOF v DR—LR—UHS http://www.cs.wisc.edu/arch/www/
18

aAVE1—F(UN—FOzT7) DHEMEESR

ABT—R (BHREINT—FTIFv)

avEa—4
oty
AN
i
iR
Pt VAV HA
19

g HERTETTI RSO

RISC vs. CISC
RISCE Syt D &Z D ENE

20

RISC - Reduced Instruction Set Computer

= RISC philosophy
= fixed instruction lengths
= load-store instruction sets
= limited addressing modes
= limited operations
= Sun SPARC, HP PA-RISC, IBM PowerPC, Compaq
Alpha, MIPS, ...

Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability,
memory space (embedded systems)

21

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

MIPS R3000 Instruction Set Architecture (ISA)

= Instruction Categories Registers
= Computational
RO - R31

= Load/Store
= Jump and Branch
= Floating Point

= Coprocessor
= Memory Management

« Special

3 Instruction Formats: all 32 bits wide

[or [rs [t [ra [sa [funct |Rformat
Lop Trs [t [immediate | 1 format
‘ opP | jump target ‘ J format

22
Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

= MIPS assembly language-arithmetic statement
add $t0, $si1, $s2
sub $t0, $s1, $s2

= Each arithmetic instyuction performs only one
operation

= Each arithmetic instruction fits in 32 bits and specifies
exactly three operands
destination <« sourcel source2

= Operand order is fixed (destination first)

= Those operands are all contained in the datapath’s
register file ($t0,$s1,$s2) — indicated by $

23

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

MIPS Register Convention,
ABI (Application Binary Interface)

Name Register Usage Preserve

Number on call?
$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

24
Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Machine Language - Add Instruction

= Instructions, like registers and words of data, are 32
bits long

= Arithmetic Instruction Format (R format):
add $t0, $s1, $s2

| op | rs | rt [rd | shamt [funct |
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result's destination

shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

25

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

= f=(g+h)-(i+j)

f,g, h i, jZFNEFhLRE $s0, $s1, $52, $53, $s4
ZEYF 5T 5.
FDRTF—EAVREI IS ILLIFERDMIPST T 4
—ay-a—RIxE3LEDH.

26

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

i HE (BEE 48R—D)

» f=(g+h)-(i+]j)

f,g, h i, jZFNEhLTRE $s0, $s1, $s2, $53, $s4
IZEIYF1F5ET 5.
EDRTF—EAVNEIV IS ILLIERDMIPST T 4
—Sar-a—KIRESHDH.

add $t0, $s1, $s2 #$t0= (g +h)
add $t1, $s3, $s4 #
sub $s0, $tO, $t1 #

27
Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Machine Language - Load Instruction

= Load/Store Instruction Format (I format):
Iw $t0,; 24($s2)

‘ op rs | rt ‘ 16 bit offset ‘
Memory
24, + $s2 = OXFFFfffff
... 0001 1000 $t0 —— 0x120040ac
+...1001 0100 ss 0x12004004
. 1010 1100 =
0x120040ac 0x0000000¢
0x00000008
0x00000004
0x00000000
data word address (hex) g

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

MIPS Memory Access Instructions

= MIPS has two basic data transfer instructions for
accessing memory
Iw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

= The data is loaded into (Iw) or stored from (sw) a
register in the register file — a 5 bit address
= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value
= A 16-bit field meaning access is limited to memory locations

within a region of +213 or 8,192 words (+215 or 32,768 bytes) of
the address in the base register

= Note that the offset can be positive or negative

29
Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

EE

= = h+ A[S]
100EEM LA ETIANHHET B. &z, AU/ AFITE
#g, h ISLY RS $s1, $s2 EEIYF1T5. SoIZEEHID
FIRTFL RIS $s3 [ZHBHDNTINGET S.
EDRT—IAVREIV AL E L.

30

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

i EE (B3FE 5018—Y)

= g=h+A[8]
100FEM R BELFIAD H B ET B, Ffz, AV ATIFE
#g, h IZLYURA $s1, $s2 #ENY T IT5. SHIZEFID
BIA7RL R (F $s3 [HisHON TS ET S.
EDRF—RAVREIVRSILE L.

w $t0, 32($s3)
add $si1, $s2, $t0

$t0 = A[8]
#g=h+$t0

31

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

BEE

= A[12] = h + A[8]

100N DELFIADHDET S, Fiz, AV INAFIFE
g, h IZLYURA $s1, $s2 #ENY TS, SHIZEFID
BB 7RLR(E $s3 SN TVSET 3.
EDRF—FAVREIVRSILE L.

32

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

i HE (BEESIR—Y)

= A[12] = h + A[8]

100FEN LR 2 EEFIANHHET . Ff=, AVINIFEE
#hISLORE $s2 ZEIVFITSH. SHICEETIDEART
FLRIF $s3 [ZHHLN TN ET B.
EDRT—IAVMEIV AL E L.

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $tO

33

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

MIPS Control Flow Instructions

= MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0+$sl
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

« Ex: if (i==j) h =1 + j;
bne $s0, $sl1, Lbll

add $s3, $s0, $sl
Lbl1:

= Instruction Format (I format):

‘ op | rs ‘ rt | 16 bit offset |

= How is the branch destination address specified?

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

More Branch Instructions

= We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, st

= Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0
= Instruction format (R format):
‘ op | s ‘ rt | rd ‘ | funct |

35

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

More Branch Instructions, Con't

= Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions
= less than blt $s1, $s2, Label
slt $at, $sl, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

= less than or equal to ble $s1, $s2, Label
= greater than bgt $s1, $s2, Label
= greatthan orequalto bge $s1, $s2, Label

= Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

= Its why the assembler needs a reserved register ($at) %

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:
Jj label #go to label

= Instruction Format (J Format):

Aside: Branching Far Away
= What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue — it inserts an
unconditional jump to the branch target and inverts the

Adapted Tom Computer Organzation and Design_Paterson & Hennessy. © 2005

\ [condition
from the low order 26 bits of the jump instruction
beq $s0, $si1, L1
becomes
bne $s0, $s1, L2
J L1
L2:
37 38
Adapted from Computer Organization and Design, Patterson & Hennessy. © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
Instructions for Accessing Procedures MIPS Immediate Instructions
= Small constants are used often in typical code
. MIPS_ procedure call instruction:) i = Possible approaches?
jal ProcedureAddress #jump and Tink = put “typical constants” in memory and load them
= Saves PC+4 in register $ra to have a link to the next « create hard-wired registers (like $zero) for constants like 1
instruction for the procedure return = have special instructions that contain constants !
= Machine format (J format): -
() addi $sp, $sp, 4 #$sp = $sp + 4
[op] 26 bit address slti $t0, $s2, 15 #$t0 = 1 if $s2<15
= Then can do procedure return with a = Machine format (I format):
Jjr $ra #return [op [s [ot] 16 bit immediate I format
= Instruction format (R format): = The constant is kept inside the instruction itself!
Cop [5] [funct | = Immediate format limits values to the range +215-1 to -21°
39 40
dspte rom Computer Organizaton and Design_Patterson & Hemnessy. © 2005 Adspte rom Computer Organizaton and Design_Patterson & Hennessy. © 2005
MIPS ISA So Far MIPS Register Convention,
ABI (Application Binary Interface)
Category Instr Op Code Example Meaning
Arithmetic add 0and32 |add $si,$s2, $s3 $s1 = $52 + $53 Name Register Usage Preserve
EUR & 't) subtract 0and34 |sub $si,$s2, $s3 $s1= $s2 - $53 Number on call?
rma
add immediate 8 addi $s1, $s2, 6 $s1=8s2+6 $Ze|’0 0 constant O (hardware) n.a.
or immediate 13 ori $s1,$s2,6 $51=$52v 6
Data Transfer | load word 35 Iw $s1, 24($s2) $s1 = Memory($s2+24) $at 1 reserved for assembler n-a
(1 format) store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1 $vO0 - $v1 2-3 returned values no
load byte 32 b $s1, 25($s2) $s1 = Memory($s2+25) $a0 - $a3 4-7 arguments yes
store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1 $t0 _ $t7 8-15 temporaries no
load upper imm 15 lui $s1,6 $s1=6*216
Cond. Branch | br on equal 2 beq $s, $52, L if (Ss1==852) go to L $s0 - $s7 16-23 saved values yes
2’5‘“20 br on not equal 5 bne $s1, $s2, L if ($s1 1=$s2) go to L $t8 - $t9 24-25 temporaries no
set on less than 0and 42 slt $s1, $s2, $s3 if ($s2<$s3) $§%l::102|se $gp 28 global pointer yes
set on less than 10 slti $s1, $52, 6 if (§52<6) $s151 else $sp 29 stack pointer yes
immediate -
Uncond. jump 2 j 2500 go to 10000 $fp 30 frame pointer yes
i,”,"_ffmm)@ & jump register Oands |jr st o to St $ra 31 return addr (hardware) yes
jump and link 3 jal - 2500 go to 10000; $ra=PC+4 41 42

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

i ABI Sample

int simple_add(int a, int b)
{

return a + b;

i ABI Sample

int simple_add(int a, int b)

{
return a + b;
1
simple_add:
add $v0, $a0, $al #
jr $ra # return

43 44
i AExvRyb—bk i Exercise
#AR Areh Il swap (int v[1, int k)
B4, $HES, Ijz=s =TS {
int temp;
PHEBEST-IWMEET) temp = vIkl;
v[k] = v[k+1];
v[k+1] = temp;
]
45 46
Adaeled from Camguls/ Orzaﬂ/lawn and De5/gn Patterson & Hennessz. © 2005 Adaeled from Camguls/ Orzaﬂ/lawn and De5/gn Patterson & Henr\essz, © 2005
i Exercise 1 i CISC - Complex Instruction Set Computer
swap:
_ , add §t1, $al, $al # = CISC philosoph
swap(int v[], int k) add $t1, $t1, $t1 # $t1 = k * 4 g B oob Y
' = ! fixed instruction lengths
{ add $t1, $a0, $t1 # $t1 = &v[kl; ! load _ _
int temp; n ! .Oa. -store |nstr.uct|on sets
temp = v[k]; lw $t0, 0($t1) # $t0 = v[kl: - : :!m!:eg addfef_s'”g modes
VIK] = vIk+]: lw # = ! limited operations
VIk+1] = temp: . ; = DEC VAX11 Intel 80x86, ...
} sw #
jr $ra # return
sll $t1, $al, 2 48

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

i TFrFovA

= BEXTAF, BEATV21—L
= Www.arch.cs.titech.ac.jp

= MIPS/SPIM Reference Cardl&kE+LFALET.

Adapted from Computer Ofganization and Design,_Patterson & Hennessy. © 2005

49

