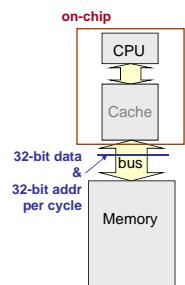

計算機アーキテクチャ 第一 (E)

半導体メモリシステムの補足

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日13:20 – 14:50


A Typical Memory Hierarchy

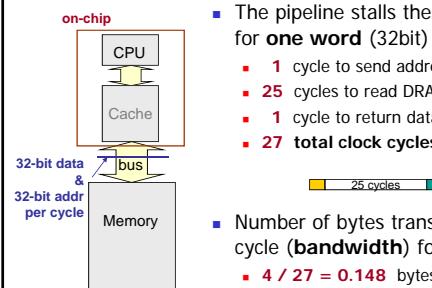
- By taking advantage of **the principle of locality** (局所性)
 - Present **much memory** in the **cheapest technology**
 - at the **speed of fastest technology**

Memory Systems that Support Caches

- The off-chip interconnect and memory architecture can affect overall system performance **in dramatic ways**

One word wide organization (one word wide bus and one word wide memory)

Assume

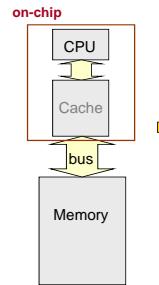

- 1 clock cycle to send the address
- 25 clock cycles for DRAM **cycle time**, 8 clock cycles **access time**
- 1 clock cycle to return a word of data

Memory-Bus to Cache **bandwidth**

- number of bytes transferred from memory to cache per clock cycle

3

One Word Wide Memory Organization

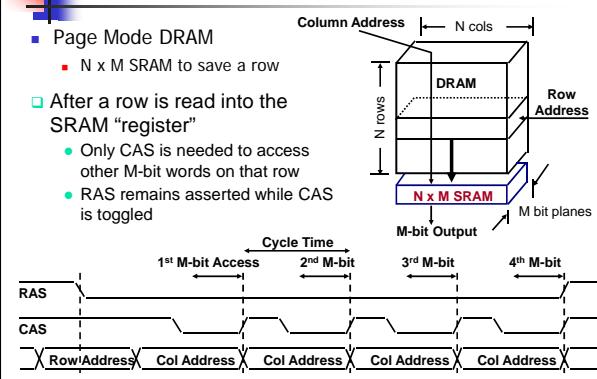

- The pipeline stalls the number of cycles for **one word** (32bit) from memory
 - 1 cycle to send address
 - 25 cycles to read DRAM
 - 1 cycle to return data
 - 27 total clock cycles** miss penalty

- Number of bytes transferred per clock cycle (**bandwidth**) for a single miss
 - $4 / 27 = 0.148$ bytes per clock

4

One Word Wide Memory Organization, con't

- What if the block size is **four words**?
 - 1 cycle to send 1st address
 - $4 * 25 = 100$ cycles to read DRAM
 - 1 cycle to return last data word
 - 102 total clock cycles** miss penalty



- Number of bytes transferred per clock cycle (**bandwidth**) for a single miss
 - $(4 * 4) / 102 = 0.157$ bytes per clock

5

Page Mode DRAM Operation

- Page Mode DRAM
 - $N \times M$ SRAM to save a row
- After a row is read into the SRAM "register"
 - Only CAS is needed to access other M-bit words on that row
 - RAS remains asserted while CAS is toggled

6

One Word Wide Memory Organization, con't

- What if the block size is **four words** and if a **page mode DRAM** is used?
 - 1 cycle to send 1st address
 - $25 + (3 * 8) = 49$ cycles to read DRAM
 - 1 cycle to return last data word
 - 51 total clock cycles** miss penalty

Number of bytes transferred per clock cycle (**bandwidth**) for a single miss

$(4 \times 4) / 51 = 0.314$ bytes per clock

7

Interleaved(インターリーブ) Memory Organization

- For a block size of **four words with interleaved memory (4 banks)**
 - 1 cycle to send 1st address
 - $25 + 3 = 28$ cycles to read DRAM
 - 1 cycle to return last data word
 - 30 total clock cycles** miss penalty

Number of bytes transferred per clock cycle (**bandwidth**) for a single miss

$(4 \times 4) / 30 = 0.533$ bytes per clock

8

2010-07-01 2011年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

10. 磁気ディスク, RAID

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日13:20 – 14:50

Acknowledgement

- Lecture slides for Computer Organization and Design, Third Edition, courtesy of **Professor Mary Jane Irwin**, Penn State University
- Lecture slides for Computer Organization and Design, third edition, Chapters 1-9, courtesy of **Professor Tod Amon**, Southern Utah University.

10

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005

Major Components of a Computer

11

Magnetic Disk (磁気ディスク)

- Purpose
 - Long term, **nonvolatile** (不揮発性) storage
 - Lowest level in the memory hierarchy
 - slow, large, inexpensive
- General structure
 - A rotating **platter** coated with a magnetic surface
 - A moveable read/write **head** to access the information on the disk
- Typical numbers
 - 1 to 4 platters per disk of 1" to 5.25" in diameter (3.5" dominate in 2004)
 - Rotational speeds of 5,400 to 15,000 RPM (rotation per minute)
 - 10,000 to 50,000 **tracks** per surface
 - cylinder** - all the tracks under the head at a given point on all surfaces
 - 100 to 500 **sectors** per track
 - the smallest unit that can be read/written (typically 512B)

12

Magnetic Disk (磁気ディスク)

<http://sougo057.aicomp.jp/0001.html> 13

Disk Drives

To access data:

- seek time (シーク時間): position the head over the proper track
- rotational latency (回転待ち時間): wait for desired sector
- transfer time (転送時間): grab the data (one or more sectors)
- Controller time (制御時間): the overhead the disk controller imposes in performing a disk I/O access

14

Magnetic Disk Characteristic

Disk read/write components

- Seek time:** position the head over the proper track (3 to 14 ms avg)
 - due to locality of disk references
 - the actual average seek time may be only 25% to 33% of the advertised number
- Rotational latency:** wait for the desired sector to rotate under the head (1/2 of 1/RPM converted to ms)
 - 0.5/5400RPM = 0.5/90 rotations per second = 5.6 ms
 - 0.5/15000RPM = 0.5/250 rotations per second = 2.0 ms
- Transfer time:** transfer a block of bits (one or more sectors) under the head to the disk controller's cache (30 to 80 MB/s are typical disk transfer rates)
- Controller time:** the overhead the disk controller imposes in performing a disk I/O access (typically < .2 ms)

15

Typical Disk Access Time

The average time to read or write a 512B sector for a disk rotating at 10,000RPM with average seek time of 6ms, a 50MB/sec transfer rate, and a 0.2ms controller overhead

16

Typical Disk Access Time

The average time to read or write a 512B sector for a disk rotating at 10,000RPM with average seek time of 6ms, a 50MB/sec transfer rate, and a 0.2ms controller overhead

Avg disk read/write time

$$\begin{aligned}
 &= 6.0\text{ms} + 0.5/(10000\text{RPM}/(60\text{sec}/\text{minute})) + \\
 &\quad 0.5\text{KB}/(50\text{MB}/\text{sec}) + 0.2\text{ms} \\
 &= 6.0 + 3.0 + 0.01 + 0.2 \\
 &= 9.21\text{ms}
 \end{aligned}$$

If the measured average seek time is 25% of the advertised average seek time, then

Avg disk read/write = 1.5 + 3.0 + 0.01 + 0.2 = 4.71ms

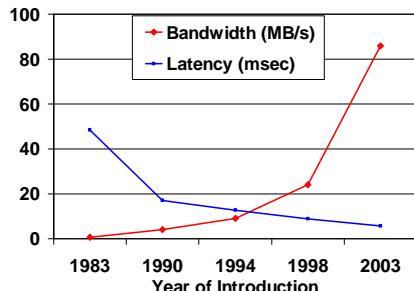
The **rotational latency** is usually the largest component of the access time

17

Disk Latency & Bandwidth Milestones

Disk **latency** is one average seek time plus the rotational latency.

Disk **bandwidth** is the peak transfer time of formatted data from the media (not from the cache).


	CDC Wren	SG ST41	SG ST15	SG ST39	SG ST37
Speed (RPM)	3600	5400	7200	10000	15000
Year	1983	1990	1994	1998	2003
Capacity (Gbytes)	0.03	1.4	4.3	9.1	73.4
Diameter (inches)	5.25	5.25	3.5	3.0	2.5
Interface	ST-412	SCSI	SCSI	SCSI	SCSI
Bandwidth (MB/s)	0.6	4	9	24	86
Latency (msec)	48.3	17.1	12.7	8.8	5.7

Patterson, CACM Vol 47, #10, 2004

18

Latency & Bandwidth Improvements

- In the time that the disk **bandwidth doubles** the **latency** improves by a factor of only **1.2** to **1.4**

19

Intra-Disk Parallelism: An Idea Whose Time Has Come, ISCA2008

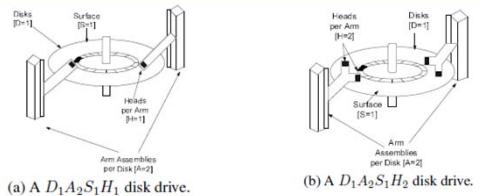


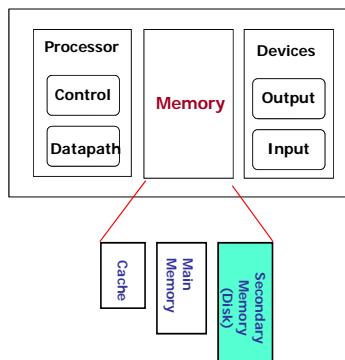
Figure 1. Example design points within the DASH intra-disk parallelism taxonomy.

20

SSD (Solid State Drive)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

21


SSD (Solid State Drive)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

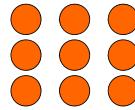
22

Major Components of a Computer

23

Reliability(信頼性), Availability

- Reliability** – measured by the **mean time to failure** (平均故障時間, MTTF).
- Service interruption is measured by **mean time to repair** (平均修復時間, MTTR)
- Availability**(アベイラビリティ)


$$\text{Availability} = \text{MTTF} / (\text{MTTF} + \text{MTTR})$$
- To increase MTTF, either improve the quality of the components or design the system to continue operating in the presence of faulty components
 1. Fault avoidance: preventing fault occurrence by construction
 2. Fault tolerance: using redundancy to correct or bypass faulty components (hardware)

高信頼ディスクの典型的なMTTFは100万時間(114年)程度。

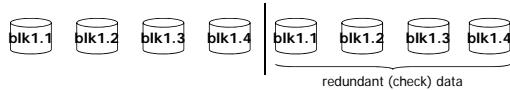
24

RAID: Disk Arrays

Redundant Array of Inexpensive Disks

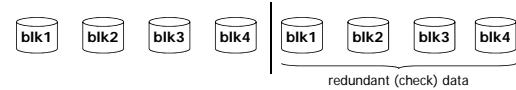
- Arrays of small and inexpensive disks
 - Increase potential **throughput** by having many disk drives
 - Data is spread over multiple disk
 - Multiple accesses are made to several disks at a time
- Reliability** is lower than a single disk
- But **availability** can be improved by adding **redundant disks (RAID)**

25


RAID: Level 0 (RAID 0, 冗長性なし, ストライピング)

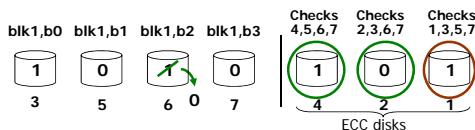
- Multiple smaller disks as opposed to **one big disk**
 - Spreading the blocks over multiple disks – **striping** – means that multiple blocks can be accessed in parallel increasing the performance
 - 4 disk system gives four times the throughput of a 1 disk system
 - Same cost as one **big disk** – assuming 4 small disks cost the same as one big disk
- No redundancy, so what if one disk fails?

26


RAID: Level 1 (Redundancy via Mirroring)

- Uses twice as many disks for redundancy so there are always two copies of the data
 - The number of redundant disks = the number of data disks so twice the cost of one big disk
 - writes have to be made to both sets of disks, so writes would be only 1/2 the performance of RAID 0
- What if one disk fails?
 - If a disk fails, the system just goes to the "mirror" for the data

27


RAID: Level 0+1 (RAID01, Striping with Mirroring)

- Combines the best of RAID 0 and RAID 1, data is striped across four disks and mirrored to four disks
 - Four times the throughput (due to striping)
 - # redundant disks = # of data disks so twice the cost of one big disk
 - writes have to be made to both sets of disks, so writes would be only 1/2 the performance of RAID 0
- What if one disk fails?
 - If a disk fails, the system just goes to the "mirror" for the data

28

RAID: Level 2 (Redundancy via ECC)

誤り訂正コード (ECC, error-correcting code) disks 4 and 2 point to either data disk 6 or 7, but ECC disk 1 says disk 7 is okay, so disk 6 must be in error

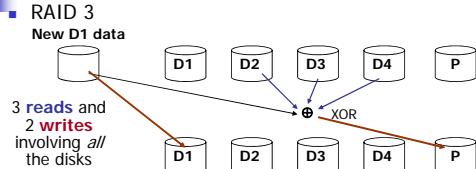
- ECC disks contain the parity of data on a set of distinct overlapping disks
 - # redundant disks = \log (total # of data disks) so almost twice the cost of one big disk
 - writes require computing parity to write to the ECC disks
 - reads require reading ECC disk and confirming parity

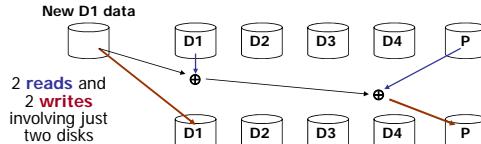
29

RAID: Level 3 (Bit/Byte-Interleaved Parity)

- Cost of higher availability is reduced to $1/N$ where N is the number of disks in a **protection group** (保護グループ)
 - # redundant disks = $1 \times$ # of protection groups
 - writes require writing the new data to the data disk as well as computing the parity, meaning reading the other disks, so that the parity disk can be updated
 - reads require reading all the operational data disks as well as the parity disk to calculate the missing data that was stored on the **failed disk**

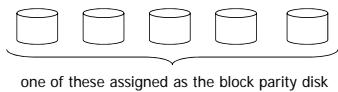
30


RAID: Level 4 (Block-Interleaved Parity)


- Cost of higher availability still only $1/N$ but the parity is stored as **blocks** associated with sets of data blocks
 - Four times the throughput (**striping**)
 - # redundant disks = $1 \times \#$ of protection groups
 - Supports “**small reads**” and “**small writes**” (reads and writes that go to just one (or a few) data disk in a protection group)

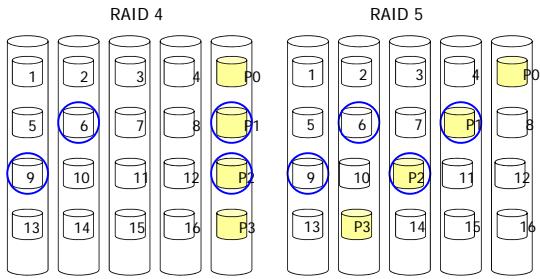
31

Small Writes



- RAID 4 small writes

32


RAID: Level 5 (Distributed Block-Interleaved Parity)

- Cost of higher availability still only $1/N$ but the parity block can be located on any of the disks so there is no single bottleneck for writes
 - Still four times the throughput (striping)
 - # redundant disks = $1 \times \#$ of protection groups
 - Supports “**small reads**” and “**small writes**” (reads and writes that go to just one (or a few) data disk in a protection group)
 - Allows **multiple simultaneous writes**

33

Distributing Parity Blocks

34

Disk and RAID Summary

- Four components of disk access time:
 - Seek Time: advertised to be 3 to 14 ms but lower in real systems
 - Rotational Latency: 5.6 ms at 5400 RPM and 2.0 ms at 15000 RPM
 - Transfer Time: 30 to 80 MB/s
 - Controller Time: typically less than .2 ms
- RAIDs can be used to improve availability
 - RAID 0 and RAID 5 – widely used in servers, one estimate is that 80% of disks in servers are RAIDs
 - RAID 1 (mirroring) – EMC, Tandem, IBM
 - RAID 4 – Network Appliance
- RAIDs have enough redundancy to allow continuous operation

35

アナウンス

- 講義スライドおよびスケジュール
 - www.arch.cs.titech.ac.jp
 - 講義日程が変更になることがあるので頻繁に確認すること。

36

Adapted from *Computer Organization and Design*, Patterson & Hennessy, © 2005