
1

2011年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

8．メモリ2： キャッシュ

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2011-06-16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Acknowledgement

Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

2

3

The Memory Hierarchy: Why Does it Work?

Temporal Locality (時間的局所性，Locality in Time):
⇒ Keep most recently accessed data items closer to

the processor
Spatial Locality (空間的局所性，Locality in Space):
⇒ Move blocks consisting of contiguous words to the

upper levels

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Block X

Block Y

4

Two questions to answer (in hardware):
Q1: How do we know if a data item is in the cache?
Q2: If it is, how do we find it?

Direct mapped
For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level must share locations in the upper level

Address mapping:
(block address) modulo (# of blocks in the cache)

First, consider block sizes of one word

Cache

5

Caching: A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order
2 memory address
bits to tell if the
memory block is in the
cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits
– the index – to
determine which cache
block

(block address) modulo (# of blocks in the cache)

Index

6

One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

2

7

Direct Mapped Cache

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

Start with an empty cache - all
blocks initially marked as not valid

8 requests, 6 misses

Tag

8

Exercise

3

Consider the main memory word reference string
3, 2, 18, 3, 16, 2, 3, 18, 3

miss

000 Mem(3)

9 requests, ? misses

Tag 氏名，学籍番号，
学籍番号マーク欄

000 Mem(3) 000 Mem(3) 000 Mem(3)

000 Mem(3) 000 Mem(3) 000 Mem(3)

000 Mem(3) 000 Mem(3) 000 Mem(3)

9 requests, ? misses

9

Another Reference String Mapping

0 4 0 4

0 4 0 4

Consider the main memory word reference string
0 4 0 4 0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)
01 4

00 Mem(0)
01

4
01 Mem(4)

000
01 Mem(4)

000

Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

8 requests, 8 misses

10

One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1
0

Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

11

Multiword Block Direct Mapped Cache

8
Index

Data (4 word)Index TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

Four words/block, cache size = 1K words

What kind of locality are we taking advantage of? 12

Direct Mapped Cache again!

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

8 requests, 6 misses

3

13

Taking Advantage of Spatial Locality

0

Let cache block hold more than one word
0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)
miss

00 Mem(1) Mem(0)
hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

8 requests, 4 misses
14

Read hits (I$ and D$)
this is what we want!

Write hits (D$ only)
allow cache and memory to be inconsistent

write the data only into the cache block (write-back)
need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted

require the cache and memory to be consistent
always write the data into both the cache block and the next level in
the memory hierarchy (write-through) so don’t need a dirty bit
writes run at the speed of the next level in the memory hierarchy –
so slow! – or can use a write buffer, so only have to stall if the
write buffer is full

Handling Cache Hits (Miss is the next issue)

Lower Level
MemoryUpper Level

Memory

Block X

Block Y

Write Buffer for Write-Through Caching

Write buffer between the cache and main memory
Processor: writes data into the cache and the write buffer
Memory controller: writes contents of the write buffer to memory

The write buffer is just a FIFO
Typical number of entries: 4
Works fine if store frequency is low

Memory system designer’s nightmare, Write buffer
saturation （飽和）

One solution is to use a write-back cache; another is to use an L2
cache

Processor
Cache

write buffer

DRAM

15 16

アナウンス

講義スライドおよびスケジュール

www.arch.cs.titech.ac.jp
講義日程が変更になることがあるので

頻繁に確認すること．

