2011-06-16

* HEMT—XTOFv F— (B)

8. AE2: ¥yl a

EH - HEIFER
kise_at_cs.titech.ac.jp
W6415E&E= AKEH13:20 — 14:50

20114 4] TOKYO TECH

Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Ofganization and Design,_Patterson & Hennessy. © 2005

The Memory Hierarchy: Why Does it Work?

= Temporal Locality (FsERIBERTHE, Locality in Time):

= Keep most recently accessed data items closer to
the processor

= Spatial Locality (ZEf#IBATHE, Locality in Space):
= Move blocks consisting of contiguous words to the

upper levels
Lower Level
To Processor [Upper Level Memory

Memory

Block X

From Processor
—_——| Block Y

Cache

= Two questions to answer (in hardware):
= Q1: How do we know if a data item is in the cache?
= Q2: Ifitis, how do we find it?

= Direct mapped

= For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level must share locations in the upper level

= Address mapping:
(block address) modulo (# of blocks in the cache)

= First, consider block sizes of one word

Caching: A Simple First Example

Main Memory

0000xx
Cache 0001xx
. 0010xx Two low order bits
IndexValid Tag Data % 0011xx define the byte in the
00 0100xx word (32-b words)
o1 0101xx
10 0110xx
11 \ 0111xx Q2: How do we find it?
\ 1000xx
Q1: Is it there? 1001xx Use next 2 low order
1010xx memory address bits
Compare the cache 1011xx _ the index - to
tag to the high order 1100xx determine which cache
2 memory address 1101xx plock
bits to tell if the 1110xx
memory block is in the 1111xx
cache (block address) modulo (# of blocks in the cache) ¢

MIPS Direct Mapped Cache Example

= One word/block, cache size = 1K words

3130 1312 11 210

Byte
offset

Data

Index Valid ~ Tag Data

What kind of locality are we taking advantage of?

Direct Mapped Cache

= Consider the main memory word reference string

Start with an empty cache - all 1 2 4 4 1
blocks initially marked as not valid 0 3 3 5

Tag O miss 1 miss 2 miss 3 miss
00 | Mem(0; 00 |Mem(0) 00 | Mem(0) 00 | Mem(0)
00 | Mem(1; 00 | Mem(1) 00 | Mem(1)
00 [Mem(2) 00 | Mem(2)
00 [Mem(3)
4 miss 3 hit 4 hit 15 miss

01 4
Too.[Mem(@)] 01 [Mem(4) 01 [Mem(4) 01 [Mem(4)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)
00 | Mem(3) 00 | Mem(3) 00 | Mem(3) 11\@0 Memi¢a)

15
= 8 requests, 6 misses

Exercise

= Consider the main memory word reference string
= 3,2,18,3,16,2,3,18,3

Tag 3 Miss K4, FEES,
BERET—IH

000| Mem(3)

= 9 requests, ? misses

Another Reference String Mapping

= Consider the main memory word reference string
04040404

MIPS Direct Mapped Cache Example

= One word/block, cache size = 1K words
Byte

. . X X 3130 . 1312 11 .. 21 offset
0 miss 4 miss 0 miss 4 miss
01 4 0 o L Hit Tag 0 o Data
00 | Mem(0) 0. | Mem 0% | Mem(4) 08. | Mem i Index
Index Valid ~ Tag Data
o [T I]
1 I |
2 | | |
o OMisS o 4miss oo O miss, oy 4 miss L e—
0% | Mem(4) 06| Mem(8) 0. | Mem(%) 00- [Mem(®)"] 1021
1022
1023
120 <132
. o —
= 8 requests, 8 misses
= Ping pong effect due to conflict misses - two memory
locations that map into the same cache block . . .
P What kind of locality are we taking advantage of? 10

Multiword Block Direct Mapped Cache

= Four words/block, cache size = 1K words
a2 10BYt8

i 3130 1312 11 4
Hit offset Data
Tag 0 8 Block offset
Index
IndexValid Tag Data (4 word)

o [T T T T I]

1 I I I I |
Hni

253
254
255

32

What kind of locality are we taking advantage of? u

Direct Mapped Cache again!

= Consider the main memory word reference string
012343415

0 miss 1 miss 2 miss 3 miss
00 | Mem(0)| 00 | Mem(0) 00 | Mem(0) 00 | Mem(0)
00 | Mem(1) | 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2)
00 [Mem(3]
4 miss 3 hit 4 hit 15 miss

01 4
To0.[Mem(@)] 01 [Mem(4) 01 [Mem(4) 01 [Mem(4)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)
00 | Mem(3) 00 | Mem(3) 00 | Mem(3) 11\90 Mem¢3)

15

= 8 requests, 6 misses
12

Taking Advantage of Spatial Locality

= Let cache block hold more than one word
012343415

0 miss 1 hit 2 miss

[00 [Mem(1) [Mem(0)] [00 [Mem() | Mem(0)] [00 |Mem(1) | Mem(o
L1 |]] | | [0 [Meme)| Memizi

3 hit 0 4 miss 3hit
00 [Mem(@) [Mem(@)] [oo.[meme} | memie) [01 [Mem(s) | Mem§4§
00 |mem@) | Mem2)| [00 [mem() | Mem@)| [00 [mMem(3) | Mem(2
4 hit 15miss
[01 [Mem(5) | Mem(#) qho1 |Mem(s)] Mem(4
00 | Mem(3 Mem(2 08, | Mem(3)] Mem(2

= 8 requests, 4 misses
13

Handling Cache Hits (Miss is the next issue)

Lower Level
. Upper Level Memol
= Read hits (1$ and D$) Memory i
= this is what we want! Block X

Block Y

= Write hits (D$ only)
= allow cache and memory to be inconsistent
= write the data only into the cache block (write-back)
= need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted
= require the cache and memory to be consistent
= always write the data into both the cache block and the next level in
the memory hierarchy (write-through) so don't need a dirty bit
= writes run at the speed of the next level in the memory hierarchy —
so slow! — or can use a write buffer, so only have to stall if the
write buffer is full

14

Write Buffer for Write-Through Caching

Cache |[+—
Processor DRAM
—|

write buffer

= Write buffer between the cache and main memory

= Processor: writes data into the cache and the write buffer

= Memory controller: writes contents of the write buffer to memory
= The write buffer is just a FIFO

= Typical number of entries: 4

= Works fine if store frequency is low
= Memory system designer’s nightmare, Write buffer

saturation (88%0)

= One solution is to use a write-back cache; another is to use an L2
cache

15

" BRATIRBLURTDa—)L
= Www.arch.cs.titech.ac.jp
 BEREHENERICRLIENHLDT
ERICHER T L.

16

