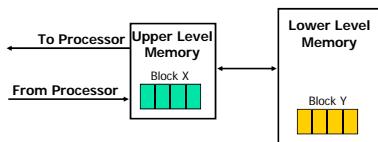


計算機アーキテクチャ 第一 (E)

8. メモリ2: キャッシュ

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日13:20 – 14:50

Acknowledgement

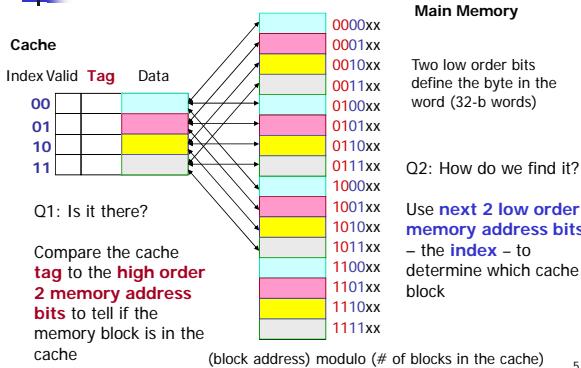

- Lecture slides for Computer Organization and Design, Third Edition, courtesy of Professor Mary Jane Irwin, Penn State University
- Lecture slides for Computer Organization and Design, third edition, Chapters 1-9, courtesy of Professor Tod Amon, Southern Utah University.

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

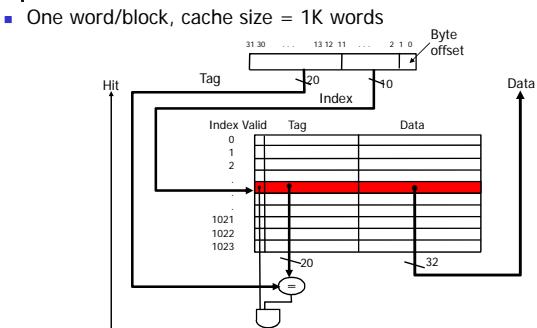
The Memory Hierarchy: Why Does it Work?

- **Temporal Locality** (時間的局所性, Locality in Time):
⇒ Keep **most recently accessed** data items closer to the processor
- **Spatial Locality** (空間的局所性, Locality in Space):
⇒ Move blocks consisting of **contiguous words** to the upper levels


3

Cache

- Two questions to answer (in hardware):
 - Q1: **How do we know if a data item is in the cache?**
 - Q2: **If it is, how do we find it?**
- **Direct mapped**
 - For each item of data at the lower level, there is exactly one location in the cache where it might be - so lots of items at the lower level must **share** locations in the upper level
 - Address mapping: **(block address) modulo (# of blocks in the cache)**
 - First, consider block sizes of **one word**


4

Caching: A Simple First Example

5

MIPS Direct Mapped Cache Example

6

Taking Advantage of Spatial Locality

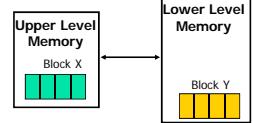
- Let cache block hold more than one word

0 1 2 3 4 3 4 15

0 miss	1 hit	2 miss
00 Mem(1) Mem(0)	00 Mem(1) Mem(0)	00 Mem(1) Mem(0)
		00 Mem(3) Mem(2)
3 hit	4 miss	3 hit
00 Mem(1) Mem(0)	01 Mem(1) Mem(3)	01 Mem(5) Mem(4)
00 Mem(3) Mem(2)	00 Mem(3) Mem(2)	00 Mem(3) Mem(2)
4 hit	15 miss	
01 Mem(5) Mem(4)	101 Mem(5) Mem(4)	
00 Mem(3) Mem(2)	00 Mem(3) Mem(2)	

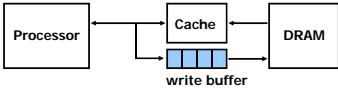
- 8 requests, 4 misses

13


Handling Cache Hits (Miss is the next issue)

Read hits (I\$ and D\$)

- this is what we want!


Write hits (D\$ only)

- allow cache and memory to be **inconsistent**
 - write the data only into the cache block (**write-back**)
 - need a **dirty** bit for each data cache block to tell if it needs to be written back to memory when it is evicted
- require the cache and memory to be **consistent**
 - always write the data into both the cache block and the next level in the memory hierarchy (**write-through**) so don't need a dirty bit
 - writes run at the speed of the next level in the memory hierarchy – **so slow!** – or can use a **write buffer**, so only have to stall if the write buffer is full

14

Write Buffer for Write-Through Caching

- Write buffer** between the cache and main memory
 - Processor: writes data into the cache and the write buffer
 - Memory controller**: writes contents of the write buffer to memory
- The write buffer is just a **FIFO**
 - Typical number of entries: 4
 - Works fine if **store frequency is low**
- Memory system designer's nightmare, Write buffer **saturation** (飽和)
 - One solution is to use a write-back cache; another is to use an L2 cache

15

アナウンス

講義スライドおよびスケジュール

- www.arch.cs.titech.ac.jp
- 講義日程が変更になることがあるので頻繁に確認すること。

16