
1

2011年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

２．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2012-04-21

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2

Acknowledgement

Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

3

参考書

コンピュータの構成と設計 第３版、パター
ソン＆ヘネシー（成田光彰 訳）、 日経ＢＰ
社、2006
コンピュータアーキテクチャ 定量的アプローチ第4版
翔泳社, 2008
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995
計算機アーキテクチャ，

橋本 昭洋 著，昭晃堂，1995

4

参考書（アセンブラに興味があれば）

MIPSのアセンブラがよくわかります．面白いです． MIPSとLinuxの関係がわかります．お勧め．

5

ただしい講義の受け方？

どんどん質問する！ ＞＞ 活発な講義！

難しい！

わからない時は ．．．

わからない顔をする！

不満のある時は．．．

不満のある顔をする！

わかった時は．．．

うなずく！

2011年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

２．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2

7

コンピュータ（ハードウェア）の古典的な要素

出典： パターソン ＆ ヘネシー、 コンピュータの構成と設計

出力制御

データパス

記憶

入力

出力

プロセッサ

コンピュータ

プロセッサは記憶装置から命令とデータを取り出す。入力装置はデータを記憶装置
に書き込む。出力装置は記憶装置からデータを読みだす。制御装置は、データパス、
記憶装置、入力装置、そして出力装置の動作を指定する信号を送る。

8

コンピュータ（ハードウェア）の古典的な要素

出力制御

データパス

記憶

入力

出力

プロセッサ

コンピュータ

インタフェース

コンパイラ

性能の評価

命令セットアーキテクチャ

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
9

Instruction Set Architecture (ISA) Type Sales

PowerPoint “comic” bar chart with approximate values (see text for correct values)

M
ill

io
ns

 o
f P

ro
ce

ss
or

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
10

MIPS I (MIPS R3000)
Instruction Set Architecture (ISA)

Instruction Categories
Computational
Load / Store
Jump and Branch
Floating Point

coprocessor

Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
11

Aside: MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
12

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination ← source1 op source2

Those operands are contained in the datapath’s
register file ($t0,$s1,$s2) – indicated by $
Operand order is fixed (destination first)

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
13

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination ← source1 op source2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination ← source1 op source2

Operand order is fixed (destination first)
Those operands are contained in the
register file ($t0,$s1,$s2) – indicated by $

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
14

Instructions, like registers and words of data,
are 32 bits long
Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct
op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
15

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

Small constants are used often in typical code
Possible approaches?

put “typical constants” in memory and load them
create hard-wired registers (like $zero) for constants like 1
have special instructions that contain constants !

The constant is kept inside the instruction itself!
Immediate format limits values to the range +215–1 to -215

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
16

演習

f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリ

ケーション・コードはどうなるか．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
17

演習 （参考書 48ページ）

f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリ

ケーション・コードはどうなるか．

add $t0, $s1, $s2 # $t0 = (g + h)
add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
18

MIPS Memory Access Instructions

MIPS has two basic data transfer instructions for
accessing memory
lw $t0, 4($s3) # load word from memory

sw $t0, 8($s3) # store word to memory

The data is loaded into (lw) or stored from (sw) a
register in the register file
The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

A 16-bit field is limited to memory locations within a region of
±213 or 8,192 words (±215 or 32,768 bytes) of the address in the
base register

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
19

Load / Store Instruction Format (I format):
lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit offset
Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
20

演習

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
21

演習 （参考書 50ページ）

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $s1, $s2, $t0 # g = h + $t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
22

演習

A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
23

演習 （参考書 51ページ）

A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
24

MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op rs rt 16 bit offset

How is the branch destination address specified?

5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
25

Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset
which register? Instruction Address Register (the PC)

its use is automatically implied by instruction
PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

limits the branch distance to -215 to +215-1 instructions from the
(instruction after the) branch instruction, but most branches are
local anyway

PC
Add

32

32 32
32

32

offset
16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
26

We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt
Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0

Instruction format (R format):

More Branch Instructions

op rs rt rd funct

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
27

More Branch Instructions, Con’t

Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions

less than blt $s1, $s2, Label

less than or equal to ble $s1, $s2, Label

greater than bgt $s1, $s2, Label

great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

Its why the assembler needs a reserved register ($at)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
28

MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

Instruction Format (J Format):
op 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
29

演習 （参考書 64ページ）

f, g, h, i, j は変数である．それぞれを $s0 から $s4に
割り付ける．このコードをコンパイルした結果を示せ．

if (i == j) f = g + h; else f = g – h;

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
30

演習 （参考書 64ページ）

f, g, h, i, j は変数である．それぞれを $s0 から $s4に
割り付ける．このコードをコンパイルした結果を示せ．

if (i == j) f = g + h; else f = g – h;

bne $s3, $s4, Else # if (i!=j) goto Else
add $s0, $s1, $s2 # f = g + h
j Exit # goto Exit

Else:
sub $s0, $s1, $s2 # f = g - h

Exit:

6

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
31

演習

ループを利用して１から１００までの合計値を求めるア

センブラを示せ．

氏名，学籍番号，
学籍番号マーク欄(右詰で)

年 月 日 Arch I

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
32

今日のまとめ, MIPS I (MIPS R3000) ISA

Instruction Categories
Computational
Load / Store
Jump and Branch
Floating Point
Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt Immediate (16bit)

jump target (26bit)

3 Instruction Formats: all 32 bits wide

R format

I format

J format

