2012-04-21 2011% RiI%:# TOKYO TECH

* HEMT—XTOFv F— (B)

2. iR, PRLREEERR

EH - HEIFER
kise_at_cs.titech.ac.jp
W6415E&E= AKEH13:20 — 14:50

i Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Ofganization and Design,_Patterson & Hennessy. © 2005

%
a
I

nf\’—}/&‘\z/—

= AVEI—SOMEERE HIMR. 15—
VIRARY—(RENRE R). BEBP
#t. 2006
AVEL—ET—XTHF v ERMTTO—F HaR
ki, 2008
AVEL—BT—FTUF %,

#RE ¥— & ERFSH, 1989
fﬁ’a/x-rAI;
MM #E BRE 1988

BN—FIZ7F

B RRE, 199

=8
HEBT—FTIF v,
1B R¥ F MR, 1995

* BEE (T TSICEKRAHNIL)

M Dominic Sweetman

MIPSO7 2 TSh&<hnMVES. mALTY. MIPSELINUXDEERAS O ET . HES.

i ELWVEZRDZITA?

s FAEABRTE! >> EFHRGER!
= EELLM!
n HHSELEE . ..
= OOSLENEETS !
= FEOHIEFE. . .
« NEDHIEETD !
= bhofKld. . .
= BT

20114 RiI%:4) TOKYO TECH

* HERT—FTOFY E— (B)

2. Rk, TRLREEERR

HHE - HEIFER
kise_at_cs.titech.ac.jp
W641585= ABEH13:20 — 14:50

aAVE1—F(UN—FOzT7) DHEMEESR

avEa—4
e — Tatyy
, A%
] i
E. Bl
= :
- F—HNR Hh

TOey Y FREEENMOHHET —FERYL T ANEBRTSEEEEE
SEEAD HARBEIRBEBNOT—HERALET . SWEEGE. T2/ R,
RREKE. ANKE. ELTHAREOBIFERET HESELD.

HE: A=Yy & ARY—, aVE1—2DOWM LKA

aAVE1—F(UN—FOz7) DHEMEESR

AVBIT—R GREINF—FTIFY

avEa—4
oty
AN
i
iR
FT—HI8R HA
8

Instruction Set Architecture (ISA) Type Sales

Millions of Processor

PowerPoint “comic” bar chart with approximate values (see text for correct values)
9

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

MIPS 1 (MIPS R3000)
Instruction Set Architecture (ISA)

= Instruction Categories Registers
= Computational
= Load / Store RO - R31

= Jump and Branch
= Floating Point
= coprocessor

= Memory Management
= Special

3 Instruction Formats: all 32 bits wide

‘ oP | s | rt | rd | sa | funct ‘ R format
[op Trs [rt [immediate | 1 format
l op | jump target ‘ J format

10

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Aside: MIPS Register Convention
Name Register Usage Preserve
Number on call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes
Adaeled from Camgu[s/ Orzamlamn and De5/gm Patterson & Hennessz. © 2005 1

MIPS Arithmetic Instructions

= MIPS assembly language arithmetic statement
add $t0, $s1, $s2
sub $t0, $s1, $s2

= Each arithmetic instruction performs only one
operation

= Each arithmetic instruction fits in 32 bits and specifies
exactly three operands
destination <« sourcel op source2
= Those operands are contained in the datapath’s
register file ($t0,$s1,%$s2) — indicated by $
= Operand order is fixed (destination first)

12

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

operation

= Each arithmetic ingtruction fits in 32 bits and specifies
exactly three opefands

destinfation <« sourcel solrce2

= Operand order is fixed (destination first)

= Those operands are contained in the
register file ($t0,$s1,$s2) — indicated by $

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

13

Machine Language - Add Instruction

= Instructions, like registers and words of data,
are 32 bits long

= Arithmetic Instruction Format (R format):

l op[] rs] rt | rd] shamt | funct ‘
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

14

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

MIPS Immediate Instructions

= Small constants are used often in typical code

= Possible approaches?
= put “typical constants” in memory and load them
= create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !

addi $sp, $sp, 4
slti $t0, $s2, 15
= Machine format (I format):

#$sp = $sp + 4
#$t0 = 1 1f $s2<15

16 bitimmediate] | format

= The constant is kept inside the instruction itself!
= Immediate format limits values to the range +25-1 to -2%5

[op [s [ot]

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

15

= f=(g+h)-(i+]j)

f,g, h i, jZEFhEhLRE $s0, $s1, $s2, $s3, $s4
IZEIYFF5ET 3.
LEDRTF—FAUREI IS ILLT=FERDMIPST T
F—ar-a—RIFESHShH.

16

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

HE (BEE 48R—D)

= f=(g+h)-(i+]j)

f,g, h i, jZEFhEhLRE $s0, $s1, $s2, $s3, $s4
IZEIYF1F5ET 5.
LEDRTF—FAREI IS ILLT=FERDMIPST T
F—ar-a—RIkESHShH.

add $t0, $s1, $s2 # $t0= (g + h)
add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

17

MIPS Memory Access Instructions

= MIPS has two basic data transfer instructions for
accessing memory
Iw $t0, 4($s3) # load word from memory
sw $t0, 8($s3) # store word to memory
= The data is loaded into (Iw) or stored from (sw) a
register in the register file
= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

= A 16-bit field is limited to memory locations within a region of
+213 or 8,192 words (£2'5 or 32,768 bytes) of the address in the
base register

18

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Machine Language - Load Instruction

= Load / Store Instruction Format (I format):
Iw $t0, 24($s2)

‘ op rs | rt ‘ 16 bit offset \
Memory
24,5 + $s2 = OXfFFffff
... 0001 1000 $t0|«—_ [0x120040ac
+...1001 0100 OX12004004
..10101100= $s2— X
0x120040ac
0x0000000c
0x00000008
0x00000004
0x00000000
data word address (hex)

19

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

BEE

= g=h+A[8]
1003EN LR AEIIANHSET D, Efz, AV I(FITE
#g, h ISLPORA $s1, $s2 #ENYFIT5. SHITEFID
BIA7RL R (F $s3 [SHisHON TS ET S.
EDRF—FAVRNETV RS LE L.

20

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

i HE (BEZE S0R—Y)

= = h+ A[S]
100N DR AEINANHDHET D, £z, AV /N(FIEE
#g, h ISLPR4E $s1, $s2 #ENYFIT5. SHICEFID
BA7RL R (& $s3 TSN TS ET 3.
LDORTF—FAVREI IS LB K.

Ilw $t0, 32($s3)
add $si1, $s2, $t0

$t0 = A[8]
g =nh+ $t0

21
Adapted from Computer Olganization and Design,_Patterson & Hennessy. © 2005

= A[12] = h + A[8]

1005EN SRR DERSIANH S LT D, Fiz, AV NAFITE
#g, h ISLPR4E $s1, $s2 #ENYFIT5. SHICEFID
B 7 KL R (& $s3 ISHIHHNTINSET .
LDRTF—FAVREI IS LB K.

22
Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

i HE (BEESIR—Y)

= A[12] = h + A[8]

1005EN SRR BERSIANH S LTS, Fiz, AV NAFITE
#g, h ISLPR4E $s1, $s2 #ENYFIT5. SHICEFID
B 7 KL R (& $s3 ISHIHHNTINVSET .
LDORTF—FAVREI IS LB K.

Ilw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $tO

23

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

MIPS Control Flow Instructions

= MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0+$sl
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

= Ex: if (i==j) h=1 + j;
bne $s0, $sl1, Lbl1l

add $s3, $s0, $sl
Lbl1:

= Instruction Format (I format):

‘ op | rs ‘ rt | 16 bit offset |

= How is the branch destination address specified?

24

Specifying Branch Destinations

= Use a register (like in Iw and sw) added to the 16-bit offset
= which register? Instruction Address Register (the PC)
= its use is automatically implied by instruction
= PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction
= limits the branch distance to -215 to +2%5-1 instructions from the
(instruction after the) branch instruction, but most branches are

local anyway from the low order 16 bits of the branch instruction
6

ﬂ,\L branch dst
32 324add address
32 WA ”D 32
32 47 h 2 a)
25

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

More Branch Instructions

= We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt

= Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0
= Instruction format (R format):
|0D |rs|n|rd| |funct|

26

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

More Branch Instructions, Con't

= Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions
= less than blt $s1, $s2, Label

slt $at, $sl, $s2 # $at set to 1 if
bne $at, $zero, Label # $sl < $s2

= less than or equal to ble $s1, $s2, Label
= greater than bgt $s1, $s2, Label
= great than orequalto bge $sl1, $s2, Label
= Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler
= Its why the assembler needs a reserved register ($at)

27

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:

Jj label #go to label

= Instruction Format (J Format):

‘ op | 26-bit address
from the low order 26 bits of the jump instruction

28
Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

HE (BEE 64R—D)

s f,0, hijXEHRTHD. ThENZE $50 HD $s4(Z
BY4FHFE. SOIT—REAVRAILLI-FERETRHE.

if(i==j) f=g+h; elsef=g-h;

29

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

HE (BEE 64R—D)

s f,0, hijXEHTHD. ThENZE $50 HD $s4(Z
BY4FHFE. SOIT—REAVRAILLI-FERETHE.

if(i==j) f=g+h; elsef=g-h;

bne $s3, $s4, Else # if (i'=]) goto Else
add $s0, $s1, $s2 #f=g+h
| Exit # goto Exit
Else:
sub $s0, $s1, $s2 #f=g-h
Exit:

30
Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

EE

s L—TEFALTIADI100ETHDAHEEZRDHZT
I S%ERYE.

£AA Arch |

K4, 2EES,
FHEESI—IMERT)

Adapted from Computer Organization and Design,_ Patterson & Hennessy, © 2005

31

SHOEED, MIPS | (MIPS R3000) I1SA

= Instruction Categories Registers
= Computational
= Load / Store RO-R31
= Jump and Branch
= Floating Point
= Memory Management [pPC____]
« Special [T
3 Instruction Formats: all 32 bits wide
[or [rs [t [rda [sa Jfunct |Rformat
[op [rs [rt [immediate(ebiy | !format
[or [jump target (26bit) | Jformat

32
Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

