2010-06-17 2010 Fi%:#) TOKYO TECH

* SERT—FTIOF v E— (B)

9. AE)4:
Xy a AT L, TOEyYIIalL—4
EH - STEIFER

kise_at_cs.titech.ac.jp
W6415#&E= AHEH13:20 — 14:50

LR—h [RE

int add (int a, int b) { returna +b; }
90V SITTMIPSE S Y3 /80 JLL, AV LA T avIc
FOTEDKSITELLT 2hEFED L.

swap (int v[], int k)
ZHORAVIRASITTMIPSE S yMZav /S LL, AV (LA T vz
FOTEDKSITELLT 2 EFTEDH L.

void max (int v[], int n)

ARV IRASITTMIPSE S EYMZa /8L, aR_AILATavIc
FOTEDKIITELLT 2 EFTED L.

RIS, ¥ TNTTVr—2ave L, ThEIQRIV /8 SIZTMIPS
WHEEYMNIIU/AILL, AR A TV T TEDKSIZELLT D
EEEDE.

COREDOBBEFLDHDHL.

LAR—MFAAR#BARICELDHHE. (BFPDFETHIL)

(2B #, I—RR/NEVWXFTEMEDRELY.)

LAR—k R 7%

= 6188 (F#&7HF) EFTICEFA—I/LTCIRE
- AEKUBHEITIRHL TS (EREN) L5 18 A

= reportlOa_at_arch.cs.titech.ac.jp

» BEFA—ILDEARIL
= Arch Report [#£%&5]
= {5l : Arch Report [33_77777]
= BFA-LORAS
- K&, FEES
« EE
« PDFO7AILERM (BFPDFETHIL)
= PDF77ALISV RS, FHEESERATEIIL
= AAFIET2HBANITEEDH DL

LR—F [ERE

SimMipsISF—42 % ¥ vaDEy bEERET SLEHZEEML,

Ev FEEFAEE L.

1. #4L7 by TARK, SAUHARE4T7—RET B,

2. £y ¥%8, 16, 32, 64, 128, 256, 512[CFEL
IBEDE Y FRERE.

3. LABIERK L7z max (1000BFRDSVHLT—4) 283207 T
T—2avEERL, TOEY FEERT L.

Fryiaby bREZFHRETIHREREL, TONRERE.

1. Bz, SAU9A4XDER

2. BIRIE Y ETYLTT42TAERK

3. BIRIE, ILTYSTT1ITAK

SimMipsI<B8 9 2R84 &

1. COEBITE LM, SimMips~DREAE, SinMipsIc#HF T 2%E.

AEADFERIRE

« EEFAOER
= 131.112.16.56
= ssh arche@131.112.16.56
« a—H4: arche
o ISRT—FFIRSEFCEE
« cd myname (f51: cd 06B77777)
= cp —r /home/arche/v0.6.4 .
= cdVv0.6.4
= memory.cc HEFBELTIAV /ML, EIT
- EEA
» HHEHETELSESNICsshTEETERLDILAERA.
» Windowsh s (E Tera Term Pro AEEFI AL TS

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

LAR—k R 7%

s 7H28 (FRT7E) ETICEFA—I/LTIRE
. AEKUBHEITIRHL TS (L) L5 8 A

= reportlOa_at_arch.cs.titech.ac.jp

» BEFA—ILDEARIL
= Arch Report [#£%&5]
= 5l : Arch Report [33_77777]
= BFA-LORAS
- K&, FEES
« EE
« PDFO7AILERM (BFPDFETHIL)
« PDFO7AIVICHERE, FEESERLATHL.
« AAFRIRTARUARICEEDH DT E.

SimMips ...

« BRERE, EREHT, TERT HEF-HRICEAL
MIPSY R T Ls2a L —ASimMips,
1E$RALIBS SR CES, Vol.50, No.11, pp. 2665-2676
(2009).

Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

A Typical Memory Hierarchy

0 By taking advantage of the principle of locality (BFrtE)
e Present much memory in the cheapest technology
o atthe speed of fastest technology

On-Chip Components F L
Control __‘—"5'
5] Second | Main | |Secondary
-] 3 cLevel:[i [memory|: [Memory
Datapath| S Cache : (DRAM) | § (Disk)
‘% e :
L=l [|38
Speed (%cycles): ¥2's 1's 10's 100's 1,000’s
Size (bytes): 100's K's 10K’s M's GstoT's
Cost: highest lowest

The Memory Hierarchy: Why Does it Work?

= Temporal Locality (Bff#IBFTHE, Locality in Time):
= Keep most recently accessed data items closer to the
processor

= Spatial Locality (ZEREIRIEFTE, Locality in Space):
= Move blocks consisting of contiguous words to the upper

levels
Lower Level
To Processor [Upper Level Memory
* Memory
Block X
From Processor
_— Block Y

10

Cache

= Two questions to answer (in hardware):
= Q1l: How do we know if a data item is in the cache?
= Q2: Ifitis, how do we find it?

= Direct mapped

= For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level must share locations in the upper level

= Address mapping:
(block address) modulo (# of blocks in the cache)

= First, consider block sizes of one word

11

Cache

A4

Caching: A Simple First Example

Main Memory
0000xx
Cache 0001xx
0010xx Two low order bits
0011xx define the byte in the

IndexValid Tag Data

AN

00 0100xx Word (32-b words)
o 0101xx
= 0110xx

11 \ 0111xx Q2: How do we find
\ 1000xx it?

Q1: Is it there? 1001xx

1010xx Use next 2 low
Compare the cache 1011xx order memory
tag to the high order 1100xx address bits — the
2 memory address 1101xx index — to determine
bits to tell if the 1110xx which cache block
memory block is in the 1111xx
cache (block address) modulo (# of blocks in the cache) ;5

MIPS Direct Mapped Cache Example

= One word/block, cache size = 1K words

3130 1312 11 210 Byte
offset
Hit Data

Index Valid Tag Data

0 (|| T]

[I |

2 1 1
1ozi
1022
1023

=20 ~.32
G
What kind of locality are we taking advantage of? 1

Multiword Block Direct Mapped Cache

= Four words/block, cache size = 1K words

Byte
i 3130 1312 1 4321
Hit offset Data

Block offset

IndexValid Tag Data

L 1 22

What kind of locality are we taking advantage of? 15

Reducing Cache Miss Rates, associativity

= Allow more flexible block placement
= Inadirect mapped cache a memory block maps to exactly
one cache block

= At the other extreme, could allow a memory block to be
mapped to any cache block — fully associative cache

= A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

16

Caching: A Simple First Example

Main Memory

0000xx
Cache 0001xx
i 0010xx Two low order bits
IndexValid Tag Data A 001 1x dofime the byte n the
0 0100xx Wword (32-b words)
01 0101xx
10 0110xx

11 \ 0111xx Q2: How do we find
\ 1000xx it?

Q1: Is it there? 1001xx

1010xx Use next 2 low
Compare the cache 1011xx order memory
tag to the high order 1100xx address bits — the
2 memory address 1101xx index — to determine
bits to tell if the 1110xx which cache block
memory block is in the 1111xx

cache (block address) modulo (# of blocks in the cache)
17

Set Associative Cache Example

Main Memory

0000xx Two low order bits
W W I
Cache gggéii define the byte in the
Way Set V Tag Data 0011 word (32-b words)
XX One word blocks
0 0 0100xx
1 0101xx
0 0110xx
1 1 0111xx
. 1000xx Q: How do we find it?
Q: Is it there? 1001xx
1010xx Use next 1 low order
Compare all the cache 1011xx memory address bit to
tags in the set to the 1100xx determine which cache
high order 3 memory 1101 set
address bits X
to tell if the memory block 1110xx
is in the cache 1111xx

18

Another Reference String Mapping

= Consider the main memory word reference string
04040404

Start with an empty cache —
all blocks initially marked as not valid

0 miss 4 miss 0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 | Mem(0) 000 | Mem(0)

010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

= 8 requests, 2 misses

= Solves the ping pong effect in a direct mapped cache due to
conflict misses

19

Four-Way Set Associative Cache

= 28 = 256 sets each with four ways (each with one block)
3130 . 1312 11 2 1, Byte offset

Tag 2
Index
ndex V Tag Data V Tag Data V Tag Data V Tag Data

of] T] o[T] ofI I] ofI I]
1 1 1 1
2 2 2 2

253 253 253 253

254 254 254 254

255 255 255 255

ST

20

Range of Set Associative Caches
= For a fixed size cache

Used for tag compare Selects the set Selects the word in the block

Ta'g ‘ Index ‘ Block offset ‘Byte‘offset

. . Increasing associativi
Decreasing associativity —l—A 9 ty
4-{ Fully associative
Direct mapped }‘; (only one set)

(only one way) Tag is all the bits except

Costs of Set Associative Caches

= N-way set associative cache costs
= N comparators (delay and area)
= MUX delay (set selection) before data is available
= Data available after set selection and Hit/Miss decision.

= When a miss occurs,
which way'’s block do we pick for replacement ?

= Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time
= Must have hardware to keep track of when each way's block was
used
= For 2-way set associative, takes one bit per set —

Smaller tags block and byte offset - N
set the bit when a block is referenced
(and reset the other way’s bit)
= Random
21 22
Cache Benefits of Set Associative Caches
= The choice of direct mapped or set associative depends on the
cost of a miss versus the cost of implementation
12
-+ 4KB
10 8KB
\ +16KB
g 87 - 32KB
A4 € 6] -~ 64KB
2 —128KB
R
-+ 512KB
2 1 D —
0 T Data from Hennessy &
j j j ' Patterson, Computer

lway 2-way 4-way 8-way Architecture, 2003

Associativity

= Largest gains are in going from direct mapped to 2-way 2

Reducing Cache Miss Rates by multiple levels

Enough room on the die for bigger L1 caches or for a second level
of caches — normally a unified L2 cache (i.e., it holds both
instructions and data) and in some cases even a unified L3 cache
For our example,

CPliyg, Of 2,

= 100 cycle miss penalty (to main memory),

= 36% load/stores,

= a2% (4%) L1I$ (D$) miss rate,

= add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

CPlyys = 2 + .02X25 + .36X.04x25 + .005%100 +
.36X.005%100 = 3.54

(as compared to 5.44 with no L2$) 25

Multilevel Cache Design Considerations

= Design considerations for L1 and L2 caches are very
different

= Primary cache should focus on minimizing hit time in support of
a shorter clock cycle

= Secondary cache should focus on reducing miss rate to reduce
the penalty of long main memory access times

= The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache — so it can be smaller (i.e.,
faster) but have a higher miss rate

= For the L2 cache, hit time is less important than miss rate
= The L2$ hit time determines L1$’s miss penalty

26

Key Cache Design Parameters

L1 typical L2 typical
Total size (blocks) 250 to 2000 | 4000 to
250,000
Total size (KB) 16 to 64 500 to 8000
Block size (B) 32 to 64 32 to 128
Miss penalty (clocks) 10 to 25 100 to 1000
Miss rates 2% to 5% 0.1% to 2%

27

Two Machines’ Cache Parameters

Intel P4 AMD Opteron
L1 organization Split 1$ and D$ Split 1$ and D$
L1 cache size 8KB for D$, 96KB for 64KB for each of I$ and D$
trace cache (~1$)
L1 block size 64 bytes 64 bytes
L1 associativity 4-way set assoc. 2-way set assoc.
L1 replacement ~ LRU LRU
L1 write policy write-through write-back
L2 organization Unified Unified
L2 cache size 512KB 1024KB (1MB)
L2 block size 128 bytes 64 bytes
L2 associativity 8-way set assoc. 16-way set assoc.
L2 replacement ~LRU ~LRU
L2 write policy write-back write-back

28

TOtvHDT—HIRR (T IL-HA5)L)

[op [rs [n [16bitimmediate | format
addi $sp, $sp, 4 [addi $29, $29, 4]

PC =36
| $29 = 8000

KiHm<A4~070+vY Intel Montecito

= 2{®DEPICTOtYHI7

= 1MB L2, 12MB L3F vy a
= EPICO7Id11 issue, 2way
Temporal MT
= FOIEEIVTRE
= 1.72BTrs
= 21.5mm x 27.7mm
= 90nm
= 100W
« RNO—HEAOERFYS
FoxtonZ & &

Source: I1SSCC 2005 papers

Summary: The Cache Design Space

Cache Size
Several interacting dimensions

= cache size

= block size

= associativity

= replacement policy

= write-through vs write-back

= write allocation Block Size
The optimal choice is a compromise

= depends on access characteristics

= workload Bad
= |-cache, D-cache

= depends on technology / cost
Simplicity often wins

Associativity

Good | Factor Factor B
Less More

31

OPT: Optimal Replacement Policy

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose net to place the miss causing line in the cache at all.

O Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady 1966 Mattson 1970 McFarling-thesis]

@ Loockahead Window : Window of accesses between miss causing
access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lockahead

ind to identify repl didates and modify current

cache state [Sugumar-SIGMETRICS1993]

OPT: HFYLTELTLVENLDEBEEHRA S,

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache

Optimal Replacement Policy @l

Understanding OPT

Access Sequence A5>A13A63A33A :ASEAEE EAﬂAéi Ag
{ [i i T T ' 1 '
PPTowderfor A5/ ilo f 14 iaiatal | | ¢
I T o R A R A Y
OPTMdufor?/ﬁ [R I O T I I S S T B O

@ Consider 4 way associative cache with one set initially containing lines
(41,442, 43,44), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows
@ Identify replacement candidates : (4;,4>.43.4s.45)
@ Lookahead and gather imminence order - shown in table,
lookahead window circled
© Make replacement decision : .45 replaces 42

@ Ag self-replaces, lockahead window and imminence order in table

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache

