
1

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

９．メモリ４：

キャッシュシステム，プロセッサシミュレータ

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2010-06-17
レポート 問題

1. int add (int a, int b) { return a + b; }

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプションに

よってどのように変化するかをまとめよ．

2. swap (int v[], int k)

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプションに

よってどのように変化するかをまとめよ．

3. void max (int v[], int n)

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプションに

よってどのように変化するかをまとめよ．

4. 同様に，サンプルアプリケーションを作成し，それをクロスコンパイラにてMIPS
命令セットにコンパイルし，コンパイルオプションによってどのように変化するか

をまとめよ．

5. この課題の感想をまとめること．

6. レポートはA4用紙2枚以内にまとめること．（必ずPDFとすること）

（２段組，コードは小さい文字でもかまわない．）

レポート 提出方法

6月18日（午後7時）までに電子メールで提出
人よりも先に提出している（先願性）と高得点

report10a_at_arch.cs.titech.ac.jp

電子メールのタイトル
Arch Report [学籍番号]
例 : Arch Report [33_77777]

電子メールの内容
氏名，学籍番号

回答
ＰＤＦファイルを添付 （必ずPDFとすること）

PDFファイルにも氏名，学籍番号を記入すること．

Ａ４用紙で２枚以内にまとめること．

レポート 問題

1. SimMipsにデータキャッシュのヒット率を測定する仕組みを追加し，

ヒット率を測定せよ．

1. ダイレクトマップ方式，ラインサイズは４ワードとする．

2. セット数を８，１６，３２，６４，１２８，２５６，５１２に変更し

た場合のヒット率を示せ．

3. 以前作成した max (1000要素のランダムデータ) を含む３つのアプリ

ケーションを作成し，そのヒット率を示すこと．

2. キャッシュのヒット率を改善する方式を実装し，その効果を示せ．

1. 例えば，ラインサイズの変更

2. 例えば，セットアソシアティブ方式

3. 例えば，フルアソシアティブ方式

3. SimMipsに関する感想など

1. この課題に要した時間，SimMipsへの感想，SimMipsに期待する改良．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

講義用の計算機環境

講義用の計算機

131.112.16.56
ssh arche@131.112.16.56

ユーザ名: arche
パスワードは講義時に連絡

cd myname (例: cd 06B77777)
cp –r /home/arche/v0.6.4 .
cd v0.6.4
memory.cc などを修正してコンパイル，実行

注意点

計算機演習室からは外部にsshで接続できないかもしれません．

Windowsからは Tera Term Pro などを利用してください．

レポート 提出方法

7月2日（午後7時）までに電子メールで提出
人よりも先に提出している（先願性）と高得点

report10a_at_arch.cs.titech.ac.jp

電子メールのタイトル
Arch Report [学籍番号]
例 : Arch Report [33_77777]

電子メールの内容
氏名，学籍番号

回答
ＰＤＦファイルを添付 （必ずPDFとすること）

PDFファイルにも氏名，学籍番号を記入すること．

Ａ４用紙で4枚以内にまとめること．

2

SimMips …

藤枝直輝, 渡邉伸平, 吉瀬謙二： 教育・研究に有用な

MIPSシステムシミュレータSimMips,
情報処理学会論文誌, Vol.50, No.11, pp. 2665-2676
(2009).

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Acknowledgement

Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Second
Level
Cache

(SRAM)

A Typical Memory Hierarchy

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB
Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology
at the speed of fastest technology

10

The Memory Hierarchy: Why Does it Work?

Temporal Locality (時間的局所性，Locality in Time):
⇒ Keep most recently accessed data items closer to the

processor

Spatial Locality (空間的局所性，Locality in Space):
⇒ Move blocks consisting of contiguous words to the upper

levels

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Block X

Block Y

11

Two questions to answer (in hardware):
Q1: How do we know if a data item is in the cache?
Q2: If it is, how do we find it?

Direct mapped
For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level must share locations in the upper level

Address mapping:
(block address) modulo (# of blocks in the cache)

First, consider block sizes of one word

Cache Cache

本棚

机

3

13

Caching: A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order
2 memory address
bits to tell if the
memory block is in the
cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find
it?

Use next 2 low
order memory
address bits – the
index – to determine
which cache block

(block address) modulo (# of blocks in the cache)

Index

14

One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

15

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

20

20Tag

Hit Data

32

Block offset

Four words/block, cache size = 1K words

What kind of locality are we taking advantage of? 16

Reducing Cache Miss Rates, associativity

Allow more flexible block placement
In a direct mapped cache a memory block maps to exactly
one cache block

At the other extreme, could allow a memory block to be
mapped to any cache block – fully associative cache

A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

17

Caching: A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order
2 memory address
bits to tell if the
memory block is in the
cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find
it?

Use next 2 low
order memory
address bits – the
index – to determine
which cache block

(block address) modulo (# of blocks in the cache)

Index

18

Set Associative Cache Example

0

Cache

Tag Data

Q: Is it there?

Compare all the cache
tags in the set to the
high order 3 memory
address bits
to tell if the memory block
is in the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

Main Memory

Two low order bits
define the byte in the
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set

4

19

Another Reference String Mapping

0 4 0 4

Consider the main memory word reference string
0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache –
all blocks initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

Solves the ping pong effect in a direct mapped cache due to
conflict misses

8 requests, 2 misses

20

Four-Way Set Associative Cache
28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1
0

Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

21

Range of Set Associative Caches

For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

22

Costs of Set Associative Caches

N-way set associative cache costs
N comparators (delay and area)
MUX delay (set selection) before data is available
Data available after set selection and Hit/Miss decision.

When a miss occurs,
which way’s block do we pick for replacement ?

Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

Must have hardware to keep track of when each way’s block was
used
For 2-way set associative, takes one bit per set →

set the bit when a block is referenced
(and reset the other way’s bit)

Random

Cache

本棚

机

24

Benefits of Set Associative Caches

The choice of direct mapped or set associative depends on the
cost of a miss versus the cost of implementation

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way
Associativity

M
is

s
R

at
e

4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB

Data from Hennessy &
Patterson, Computer
Architecture, 2003

Largest gains are in going from direct mapped to 2-way

5

25

Reducing Cache Miss Rates by multiple levels

Enough room on the die for bigger L1 caches or for a second level
of caches – normally a unified L2 cache (i.e., it holds both
instructions and data) and in some cases even a unified L3 cache
For our example,

CPIideal of 2,
100 cycle miss penalty (to main memory),
36% load/stores,
a 2% (4%) L1I$ (D$) miss rate,
add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

CPIstalls = 2 + .02×25 + .36×.04×25 + .005×100 +
.36×.005×100 = 3.54

(as compared to 5.44 with no L2$)

L1 cache L2 cache L3 cache

26

Multilevel Cache Design Considerations

Design considerations for L1 and L2 caches are very
different

Primary cache should focus on minimizing hit time in support of
a shorter clock cycle
Secondary cache should focus on reducing miss rate to reduce
the penalty of long main memory access times

The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache – so it can be smaller (i.e.,
faster) but have a higher miss rate
For the L2 cache, hit time is less important than miss rate

The L2$ hit time determines L1$’s miss penalty

27

Key Cache Design Parameters

L1 typical L2 typical

Total size (blocks) 250 to 2000 4000 to
250,000

Total size (KB) 16 to 64 500 to 8000

Block size (B) 32 to 64 32 to 128

Miss penalty (clocks) 10 to 25 100 to 1000

Miss rates 2% to 5% 0.1% to 2%

28

Two Machines’ Cache Parameters

Intel P4 AMD Opteron

L1 organization Split I$ and D$ Split I$ and D$

L1 cache size 8KB for D$, 96KB for
trace cache (~I$)

64KB for each of I$ and D$

L1 block size 64 bytes 64 bytes

L1 associativity 4-way set assoc. 2-way set assoc.

L1 replacement ~ LRU LRU

L1 write policy write-through write-back

L2 organization Unified Unified

L2 cache size 512KB 1024KB (1MB)

L2 block size 128 bytes 64 bytes

L2 associativity 8-way set assoc. 16-way set assoc.

L2 replacement ~LRU ~LRU

L2 write policy write-back write-back

プロセッサのデータパス（シングル・サイクル）

addi $sp, $sp, 4 [addi $29, $29, 4]

op rs rt 16 bit immediate I format

PC = 36
$29 = 8000

先端マイクロプロセッサ Intel Montecito

２個のEPICプロセッサコア

1MB L2, 12MB L3キャッシュ

EPICコアは11 issue, 2way
Temporal MT
初の10億超トランジスタ

1.72BTrs
21.5mm x 27.7mm
90nm
100W

パワー制御用の専用チップ
Foxtonを搭載

Source: ISSCC 2005 papers

6

31

Summary: The Cache Design Space

Several interacting dimensions
cache size
block size
associativity
replacement policy
write-through vs write-back
write allocation

The optimal choice is a compromise
depends on access characteristics

workload
I-cache, D-cache

depends on technology / cost

Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

OPT: Optimal Replacement Policy

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache
OPT: あまり切迫していないものを置き換える．

Optimal Replacement Policy の例

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache

