
1

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

8．メモリ3：半導体メモリシステム

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2010-06-10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

講義用の計算機環境

講義用の計算機

131.112.16.56
ssh arche@131.112.16.56

ユーザ名: arche
パスワードは講義時に連絡

mkdir myname (例: mkidr 06B77777)
cd myname (例: cd 06B77777)

注意点

計算機演習室からは外部にsshで接続できないかもしれません．

Windowsからは Tera Term Pro などを利用してください．

3
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Sample program

#include <stdio.h>
int main(){

int i;
int sum = 0;

for(i=1; i<=100; i++) sum += i;

return sum;
}

mipsel-linux-gcc -O0 -S main.c -o main_opt0.s
/home/share/cad/mipsel/usr/bin/mipsel-linux-gcc

コンパイラの最適化オプションを変更しながら，
どのような命令列が出力されるか試してみる．

4
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Sample program

#include <stdio.h>
int main(){

int i;
int sum = 0;

for(i=1; i<=100; i++)
sum += i;

return sum;
}

mipsel-linux-gcc -O0 -S main.c -o main_opt0.s

5
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Sample program

#include <stdio.h>

int main(){
int i;
int sum = 0;

for(i=1; i<=100; i++)
sum += i;

return sum;
}

mipsel-linux-objdump -d ./a.out

6
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Sample program

Makefile
all:

mipsel-linux-gcc -O0 -S main.c -o main_opt0.s
mipsel-linux-gcc -O1 -S main.c -o main_opt1.s
mipsel-linux-gcc -O2 -S main.c -o main_opt2.s
mipsel-linux-gcc -O3 -S main.c -o main_opt3.s

遅延分岐に注意

2

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

7

Exercise 2

void swap (int v[], int k) {

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

void max (int v[], int n){

int i;

for (i = 1; i < n; i +=1){

if (v[i-1] > v[i]) swap(v,i-1);

}

}

レポート 問題

1. int add (int a, int b) { return a + b; }

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプションに

よってどのように変化するかをまとめよ．

2. swap (int v[], int k)

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプションに

よってどのように変化するかをまとめよ．

3. void max (int v[], int n)

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプションに

よってどのように変化するかをまとめよ．

4. 同様に，サンプルアプリケーションを作成し，それをクロスコンパイラにてMIPS
命令セットにコンパイルし，コンパイルオプションによってどのように変化するか

をまとめよ．

5. この課題の感想をまとめること．

6. レポートはA4用紙2枚以内にまとめること．（必ずPDFとすること）

（２段組，コードは小さい文字でもかまわない．）

レポート 提出方法

6月18日（午後7時）までに電子メールで提出
人よりも先に提出している（先願性）と高得点

report10a_at_arch.cs.titech.ac.jp

電子メールのタイトル
Arch Report [学籍番号]
例 : Arch Report [33_77777]

電子メールの内容
氏名，学籍番号

回答
ＰＤＦファイルを添付 （必ずPDFとすること）

PDFファイルにも氏名，学籍番号を記入すること．

Ａ４用紙で２枚以内にまとめること．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Acknowledgement

Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

N
 ro

w
s

N cols

DRAM

Column Address

M-bit Output
M bit planes

Row
Address

Synchronous DRAM (SDRAM) Operation

After a row is read into the SRAM
register

Inputs CAS as the starting “burst”
address along with a burst length
Transfers a burst of data from a
series of sequential addresses within
that row

+1

Row Address

CAS

RAS

Col Address

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit

Cycle Time

Row Add

N x M SRAM

Other DRAM Architectures

Double Data Rate SDRAMs – DDR-SDRAMs (and
DDR-SRAMs)

Double data rate because they transfer data on both the
rising and falling edge of the clock
Are the most widely used form of SDRAMs

DDR2-SDRAMs
4 data prefetch

DDR3-SDRAMs
8 data prefetch

3

One Word Wide Memory Organization, con’t

What if the block size is four words and
if a page mode DRAM is used?

1 cycle to send 1st address
25 + (3 * 8) = 49 cycles to read DRAM
1 cycle to return last data word

51 total clock cycles miss penalty

Number of bytes transferred per clock
cycle (bandwidth) for a single miss

(4 x 4) / 51 = 0.314 bytes per clock

25 cycles

8 cycles

8 cycles

8 cycles

CPU

Cache

Memory

bus

on-chip

Interleaved（インターリーブ） Memory Organization

For a block size of four words with
interleaved memory (4 banks)

1 cycle to send 1st address
25 + 3 = 28 cycles to read DRAM
1 cycle to return last data word

30 total clock cycles miss penalty

CPU

Cache

Memory
bank 1

bus

on-chip

Memory
bank 0

Memory
bank 2

Memory
bank 3

Number of bytes transferred per
clock cycle (bandwidth) for a single
miss

(4 x 4) / 30 = 0.533 bytes per clock

25 cycles

25 cycles

25 cycles

25 cycles

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

キャッシュシステム

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2010-06-10

16

The Memory Hierarchy: Why Does it Work?

Temporal Locality (時間的局所性，Locality in Time):
⇒ Keep most recently accessed data items closer to the

processor

Spatial Locality (空間的局所性，Locality in Space):
⇒ Move blocks consisting of contiguous words to the upper

levels

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Block X

Block Y

17

Two questions to answer (in hardware):
Q1: How do we know if a data item is in the cache?
Q2: If it is, how do we find it?

Direct mapped
For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level must share locations in the upper level

Address mapping:
(block address) modulo (# of blocks in the cache)

First, consider block sizes of one word

Cache

18

Caching: A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order
2 memory address
bits to tell if the
memory block is in the
cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits
– the index – to
determine which cache
block

(block address) modulo (# of blocks in the cache)

Index

4

19

One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

20

Direct Mapped Cache

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

Start with an empty cache - all
blocks initially marked as not valid

8 requests, 6 misses

Tag

21

Exercise

3

Consider the main memory word reference string
3, 2, 18, 3, 16, 2, 3, 18, 3

miss

000 Mem(3)

9 requests, ? misses

Tag 氏名，学籍番号，
学籍番号マーク欄(右詰で)

000 Mem(3) 000 Mem(3) 000 Mem(3)

000 Mem(3) 000 Mem(3) 000 Mem(3)

000 Mem(3) 000 Mem(3) 000 Mem(3)

9 requests, ? misses

22

Another Reference String Mapping

0 4 0 4

0 4 0 4

Consider the main memory word reference string
0 4 0 4 0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)
01 4

00 Mem(0)
01

4
01 Mem(4)

000
01 Mem(4)

000

Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

8 requests, 8 misses

23

One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1
0

Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

24

Multiword Block Direct Mapped Cache

8
Index

Data (4 word)Index TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

20

20Tag

Hit Data

32

Block offset

Four words/block, cache size = 1K words

What kind of locality are we taking advantage of?

5

25

Direct Mapped Cache again!

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

8 requests, 6 misses
26

Taking Advantage of Spatial Locality

0

Let cache block hold more than one word
0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)
miss

00 Mem(1) Mem(0)
hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

8 requests, 4 misses

27

Read hits (I$ and D$)
this is what we want!

Write hits (D$ only)
allow cache and memory to be inconsistent

write the data only into the cache block (write-back)
need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted

require the cache and memory to be consistent
always write the data into both the cache block and the next level in
the memory hierarchy (write-through) so don’t need a dirty bit
writes run at the speed of the next level in the memory hierarchy –
so slow! – or can use a write buffer, so only have to stall if the
write buffer is full

Handling Cache Hits (Miss is the next issue)

Lower Level
MemoryUpper Level

Memory

Block X

Block Y

28

Write Buffer for Write-Through Caching

Write buffer between the cache and main memory
Processor: writes data into the cache and the write buffer
Memory controller: writes contents of the write buffer to memory

The write buffer is just a FIFO
Typical number of entries: 4
Works fine if store frequency is low

Memory system designer’s nightmare, Write buffer
saturation （飽和）

One solution is to use a write-back cache; another is to use an L2
cache

Processor
Cache

write buffer

DRAM

29

Sources of Cache Misses

Compulsory (初期参照ミス，cold start or process
migration, first reference):

First access to a block, “cold” fact of life, not a whole lot you
can do about it
If you are going to run “millions” of instruction, compulsory
misses are insignificant

Conflict (競合性ミス，collision):
Multiple memory locations mapped to the same cache location
Solution 1: increase cache size
Solution 2: increase associativity

Capacity (容量性ミス）:
Cache cannot contain all blocks accessed by the program
Solution: increase cache size

30

Handling Cache Misses

Read misses (I$ and D$)
stall （ストール，立ち往生させる）the entire pipeline, fetch the block
from the next level in the memory hierarchy, install it in the cache
and send the requested word to the processor, then let the pipeline
resume

Write misses (D$ only)
Write allocate – just write the word into the cache updating both
the tag and data, no need to check for cache hit, no need to stall

stall the pipeline, fetch the block from next level in the memory
hierarchy, install it in the cache, write the word from the processor to
the cache, then let the pipeline resume

No-write allocate – skip the cache write and just write the word
to the write buffer (and eventually to the next memory level), no
need to stall if the write buffer isn’t full; must invalidate the cache
block since it will be inconsistent

6

31

Miss Rate vs Block Size vs Cache Size

0

5

10

8 16 32 64 128 256

Block size (bytes)

M
is

s
ra

te
 (%

) 8 KB
16 KB
64 KB
256 KB

Miss rate goes up if the block size becomes a significant
fraction of the cache size
because the number of blocks that can be held in the same size
cache is smaller

32

Block Size Tradeoff

Larger block size means larger miss penalty
Latency to first word in block + transfer time for remaining words

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks
compromises
Temporal Locality

Block Size

Average
Access
Time

Increased Miss
Penalty

& Miss Rate

Block Size

In general, Average Memory Access Time
= Hit Time + Miss Penalty x Miss Rate

Larger block sizes take advantage of spatial locality but
If the block size is too big relative to the cache size,
the miss rate will go up

33

Cache so far

The Principle of Locality:
Program likely to access a relatively small portion of the address
space at any instant of time

Temporal Locality: Locality in Time
Spatial Locality: Locality in Space

Three major categories of cache misses:
Compulsory misses: sad facts of life. Example: cold start misses
Conflict misses: increase cache size and/or associativity
Nightmare Scenario: ping pong effect!
Capacity misses: increase cache size

Cache design space
total size, block size, associativity (replacement policy)
write-hit policy (write-through, write-back)
write-miss policy (write allocate, write buffers)

