2010-06-10 2010 Fi%:#) TOKYO TECH

* SERT—FTIOF v E— (B)

8. AEUIFBERAEII AT LA

TS AEIRER
kise_at_cs.titech.ac.jp
W6415#&E= AHEH13:20 — 14:50

AEADERIRE

« EZFAOHER
=« 131.112.16.56
= ssh arche@131.112.16.56
« 2—H4£: arche
AV GLNEY o0
« mkdir myname (#l: mkidr 06B77777)
« cd myname (f51: cd 06B77777)
« GFER
» FHEHEEEMNSIENEICsshTEKETERLNELAERA.
= Windowsh 5 (& Tera Term Pro 7 EFFI AL TZELN.

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Sample program

AV RISDBRBEILF T AV EEELEAD,
#include <stdio.h> EDQEIBHHIHNENSNENHLTHS.
int main(){

inti;

int sum = 0O;

for(i=1; i<=100; i++) sum +=i;

return sum;

naint
Jfrane $fp, 24,331
Jmask 0=40000000, -8
Fmask 0x00000000, 0

Sample program et rorcorer

wset nonacro

addiv 3sp,3sp,-24

#include <stdio.h> I F e
i) Tm $U,§($fp)
int main(){ S snieem
. . b 32
int i; rep
. $L3:
int sum = 0; W 83,5030
Lu $2,12(3Fp)
nop

addu 92,943,592
= $2,8(3fn)

e iee— o R 1 32,12 (3
for(i=1; i<=100; i++) e @)
. addiu - $2,$2,1
sum +=i; o 2, 12(30)
Ly $2,12(3fp)
o

st 92,382,101
bre 92,890,903

} return sum; rop
i i X i } Ly 32,8(3fp)
mipsel-linux-gcc -00 -S main.c -0 main_opt0.s nove g?ﬁ’%?ssp)
i = = i , Bsp, 24
/home/share/cad/mipsel/usr/bin/mipsel-linux-gcc mipsel-linux-gcc -00 -S main.c -0 main_opt0.s i g;;;,sssp,
3 oy
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 P
Sample program Sample program
mipsel-linux-objdump -d ./a.out main:
#include <stdio.h> *
00! Tres addiu sp,sp, 24 Jframe $sp, 0,331
4005041 afbe0010 s S8 16(sp) Jhask 000000000, 0
. . 40058 ¢ 0320021 nove =8,sp
int main(){ 40050c 1 aPcO0008 su zero,8(s8) Lfmazk 0x00000000, 0
A005d0 ¢ 24020001 1i w0, 1
inti; 400504 afc2000c su w0, 12(s8) Lzet nore0rcer
A005c8 ¢ 1000000z b 400804 +0344>
f ; =t nomacro
int sum = 0; iomei w0 wusen *
400524 Bfc2000c lu w0, 12 (s8)
400528 00000000 nop 1 $3 1
=1 i i b1 v B e 4 1 BESIEIER 1
N — - H afc 0 w0, B (st -~ td
for(i=1; i<=100; i++) 400584 EFC2000c it} w0, 12(s8) “ 11 $2’ 5050
sum += i R N,
! 400800+ afc20002 S0 W # Makefile
400804 Bfc2000c L w0, 12(s8) .
400608 00000000 nop all:
- 40080c ¢ 28420085 slti w0, w0, 101
return sum; 400810 1440¢F£3 brez w0, 400520 <IEMEFOR205 mipsel-linux-gcc -00 -S main.c -0 main_opt0.s
4008141 00000000 nop))))
} 40013 8Fc20008 N w0, 8(s8) mipsel-linux-gcc -O1 -S main.c -o main_optl.s
400612 03008821 nove sp, ;8(, —
400620 Bfben010 1 3, 16 i i — — - i - i
ooea: Soeooty s 16t mipsel-linux-gcc -0O2 -S main.c -0 main_opt2.s
400628 03200008 i H H i
s 06000600 ﬁgp ra mipsel-linux-gcc -O3 -S main.c -o main_opt3.s
5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Exercise 2

void swap (int v[], int k) {
int temp;
temp = v[k];
vkl = v[k+1];
vk+1] = temp;

void max (int v[], int n){
int i;
for (i =1; i <n;i+=1){
if (v[i-1] > v[i]) swap(v,i-1);
1
}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

LR—h [RE

1. int add (int a, int b) { return a +b; }

#H0RAV A SITTMIPSE S Y3 /80 JLL, AV LA T avIc
FOTEDKSITELLT 2hEFED K.

2. swap (int v[], int k)
9OV SITTMIPSE S Y3/ JLL, AV ILATavic
FOTEDKSITELLT 2hEFTEDH L.

3. void max (int v[l, int n)

ARV IAASITTMIPSER S EYMZa /S JLL, a_(ILATavIc
FOTEDKIITELLT 2hEFTEDE.

4. RIS, YO TNTFIVr—avEERL, ThEIRRIV/SLSISTMIPS
BREYNIAVSAILL, VAT TLavITEoTED KSITELT HH
EEEDEL.

5. ZORBEOREEFLHDL.

6. LAR—NIARMRURIZELD DL, (WTPDFEFTHIL)

(288, 3—RIZNSVXFTEMEDALY.)

LAR—k R 7%

= 6188 (F#&7HF) ETICEFA—/LTCIRE
- AEKUBHEITIRHL TS (RN L5 8 A

= reportl0Oa_at_arch.cs.titech.ac.jp

» BEFA—ILDEARIL
= Arch Report [#%%&5]
= {5l : Arch Report [33_77777]
= BFA-LORAE
- K&, FEES
« EE
« PDFO7AILERM (BFPDFETHIL)
« PDF77ALISV RS, FHEESERATIIL
= AAFRIET2HLRNITEEDH DL

Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Synchronous DRAM (SDRAM) Operation

Column Address +1
|¢— N cols —-|
After a row is read into the SRAM
register
Inputs CAS as the starting “burst”
address along with a burst length

Transfers a burst of data from a
series of sequential addresses within

that row w/

DRAM Row

Address

f—nN rovws —]

/.1 M bit planes
Cycle Time M-bit Output
—
15t M-bit Access 2"¢ M-bit 39 M-bit 4t M-bit
1 — — — —l
rRAS)} 4
1
cAs | \

X Row Add

L

1
T
1
T
:XRow AddressX Col Address X

Other DRAM Architectures

= Double Data Rate SDRAMs — DDR-SDRAMSs (and
DDR-SRAMS)
= Double data rate because they transfer data on both the
rising and falling edge of the clock
= Are the most widely used form of SDRAMs
= DDR2-SDRAMs M
= 4 data prefetch
= DDR3-SDRAMs
= 8 data prefetch

One Word Wide Memory Organization, con't

= What if the block size is four words and

Interleaved (€2>4—1)—7) Memory Organization

) ' Copcild QO For a block size of four words with
onTchi if a page mode DRAM is used? CPU interleaved memory (4 banks)
B = 1 cycle to send 1st address B 1 cycle to send 1st address
CPU = 25+ (3 *8) =49 cycles to read DRAM 25 + 3 =28 cycles to read DRAM
= 1 cycle to return last data word Gedie ® 1 cycle to return last data word
Cache = 51 total clock cycles miss penalty B 30 total clock cycles miss penalty
bus
[T _25cyces W
l"£ s cyclesim Memory|| Memory|| Memory| | Memory| T 25cycles |
8 cycles] bank 0 ||bank 1 ||bank 2 ||bank 3 [T 25cycles 1
T8 cycles]
Memory = Number of bytes transferred per
= Number of bytes transferred per clock clock cycle (bandwidth) for a single
cycle (bandwidth) for a single miss miss
= (4x4)/51=0.314 bytes per clock = (4 x 4) / 30 = 0.533 bytes per clock
2010-06-10 20104 I%#) TOKYO TECH

* AEET—XTIOF v B (B)

Ty ad AT LA

HHE - HEIFER
kise_at_cs.titech.ac.jp
W6413EE=E KEH13:20 — 14:50

The Memory Hierarchy: Why Does it Work?

= Temporal Locality (Bff#IBEATHE, Locality in Time):
= Keep most recently accessed data items closer to the
processor

= Spatial Locality (ZEREIRIEFT, Locality in Space):
= Move blocks consisting of contiguous words to the upper

levels
Lower Level
To Processor [Upper Level Memory
* Memory
Block X
From Processor
_— Block Y

16

Cache

= Two questions to answer (in hardware):
= Q1l: How do we know if a data item is in the cache?
= Q2: Ifitis, how do we find it?

= Direct mapped

= For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level must share locations in the upper level

= Address mapping:
(block address) modulo (# of blocks in the cache)

= First, consider block sizes of one word

17

Caching: A Simple First Example

Main Memory

0000xx
Cache 0001xx
i 0010xx Two low order bits
IndexValid Tag Data % PPN e e
0o 0100xx ~ Word (32-b words)
01 0101xx
10 0110xx

11 \ 0111xx Q2: How do we find it?
\ 1000xx

Q1: Is it there? 1001xx Use next 2 low order

1010xx memory address bits

Compare the cache 1011xx —the index - to

tag to the high order 1100xx determine which cache
2 memory address 1101xx block

bits to tell if the 1110xx

memory block is in the 1111xx

cache (block address) modulo (# of blocks in the cache) |4

MIPS Direct Mapped Cache Example

= One word/block, cache size = 1K words .
yte

3130 1312 11 219 /otiset
Hit Tag 0 0 Data
Index

Index Valid Tag Data
o O T]
1 [I]

What kind of locality are we taking advantage of? 19

Direct Mapped Cache

= Consider the main memory word reference string

Start with an empty cache - all
blocks initially marked as not valid 012343415

Tag O miss 1 miss 2 miss 3 miss
00 | Mem(0 00 |Mem(0) 00 | Mem(0) 00 | Mem(0)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1)]

00 | Mem(2) 00 | Mem(2)

00 | Mem(3)

4 miss 3 hit 4 hit 15 miss

.
00. [Mem(®)] 01 | Mem(4) 01 | Mem(4) 01 | Mem(4)

00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)

00 | Mem(3) 00 | Mem(3) 00 | Mem(3)l 17000 | MemiR)

= 8 requests, 6 misses

15

20

Exercise

= Consider the main memory word reference string
= 3,2,18,3,16,2,3,18,3

Tag 3 Miss K&, 2HEES,
PHEBFEYT—IHERT)

000| Mem(3)

= 9 requests, ? misses

21

Another Reference String Mapping

= Consider the main memory word reference string
04040404

0 miss 4 miss 0 miss 4 miss
0! !

00 | Mem(0) 06 | Mem{@)| 0 | Mem(4)) 00. | Mem
o 0 miss 01 “4miss g O miss, o7 4 miss

0% Memii)u 00 Memig) [Memii) 08 Memi§)4

= 8 requests, 8 misses
= Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

22

MIPS Direct Mapped Cache Example

= One word/block, cache size = 1K words
Byte

3130 . 1312 11 21 offset
Hit Tag 0 0 Data
Index

Index Valid Tag Data
o [T I]
1 [I |
2 [|]

1021

1022
1023

What kind of locality are we taking advantage of? 23

Multiword Block Direct Mapped Cache

= Four words/block, cache size = 1K words
22 1gBYtE

Data

i 3130 1312 1 4
Hit offset
Tag 0 8 Block offset
Index

Data (4 word)

IndexValid Tag

What kind of locality are we taking advantage of?

24

Direct Mapped Cache again!

= Consider the main memory word reference string
012343415

Taking Advantage of Spatial Locality

= Let cache block hold more than one word
012343415

) . . . 0 miss 1 hit 2 miss
0 miss 1 miss 2 miss 3 miss [00 [Mem(1) [Mem(0)] [00 [Mem(1) [Mem(0)] [00 |Mem(1)| Mem(o
00 | Mem(0 00 |Mem(0) 00 | Mem(0) 00 | Mem(0) [\] \ | [00 | Mem@3)| Mem(2
00 | Mem(1) 00 | Mem(1) 00 | Mem(1
00 | Mem(2) 00 | Mem(2) 3 hit 4 miss 3hit
00| Mem(3) 04
em [00 [Mem(1) [Mem(@)| T[oe.|mem@} | memtel [01 [Mem(s)| Mem(a
4 miss 3 hit 4 hit 15 miss [00 [Mem@3) | Mem2)| [00 [Mem(3) | Memézi 00 | Mem@3) | Mem(2
o1 4
T oo [Mem(©) 01 | Mem(4) 01 | Mem(4) 01 | Mem(4)
00 | Mem(1 00 | Mem(1 00 | Mem(1 00 | Mem(1 4 hit 15miss
00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 01 | Mem(5) | Mem(4 1301 | Mem(5) | Mem(4),
00 | Mem(3) 00 | Mem(3) 00 | Mem@3)! 11000 | Mem(Q) 15 m 08 Mem(2
= 8 requests, 6 misses » = 8 requests, 4 misses ”
Handling Cache Hits (Miss is the next issue) Write Buffer for Write-Through Caching
Lower Level
. Upper Level Memory Cache [+—
= Read hits (1$ and D$) Memory Processor DRAM
= this is what we want! Block X -
Block Y write buffer

= Write hits (D$ only)
= allow cache and memory to be inconsistent
= write the data only into the cache block (write-back)
= need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted
= require the cache and memory to be consistent
= always write the data into both the cache block and the next level in
the memory hierarchy (write-through) so don’t need a dirty bit
= writes run at the speed of the next level in the memory hierarchy —
so slow! — or can use a write buffer, so only have to stall if the
write buffer is full

27

= Write buffer between the cache and main memory

= Processor: writes data into the cache and the write buffer
= Memory controller: writes contents of the write buffer to memory

= The write buffer is just a FIFO

= Typical number of entries: 4
= Works fine if store frequency is low

= Memory system designer’s nightmare, Write buffer

saturation (§870)
= One solution is to use a write-back cache; another is to use an L2

cache 28

Sources of Cache Misses

= Compulsory (#)#18H=X, cold start or process
migration, first reference):

= First access to a block, “cold” fact of life, not a whole lot you
can do about it

= If you are going to run “millions” of instruction, compulsory
misses are insignificant
= Conflict &M, collision):
= Multiple memory locations mapped to the same cache location
= Solution 1: increase cache size
= Solution 2: increase associativity
= Capacity (AREMSR):
= Cache cannot contain all blocks accessed by the program
= Solution: increase cache size

29

Handling Cache Misses

Read misses (1$ and D$)

« stall (Rb—)L, IIEEESHE B)the entire pipeline, fetch the block
from the next level in the memory hierarchy, install it in the cache
and send the requested word to the processor, then let the pipeline
resume

Write misses (D$ only)

= Write allocate — just write the word into the cache updating both
the tag and data, no need to check for cache hit, no need to stall
= stall the pipeline, fetch the block from next level in the memory

hierarchy, install it in the cache, write the word from the processor to
the cache, then let the pipeline resume

= No-write allocate — skip the cache write and just write the word
to the write buffer (and eventually to the next memory level), no
need to stall if the write buffer isn’t full; must invalidate the cache
block since it will be inconsistent

30

Miss Rate vs Block Size vs Cache Size

10

g

o

8 5

0

@2

= .\0—0—,“/‘

o T —
0 T T T T
8 16 32 64 128 256

Block size (bytes)
= Miss rate goes up if the block size becomes a significant

fraction of the cache size
because the number of blocks that can be held in the same size

cache is smaller
31

Block Size Tradeoff

= Larger block sizes take advantage of spatial locality but
= If the block size is too big relative to the cache size,
the miss rate will go up

= Larger block size means larger miss penalty
» Latency to first word in block + transfer time for remaining words

R Average
Miss i i i M Access
Exploit: tial Localit, 1ss A
Rate xploits Spatial Locality Penalty Time

Increased Miss

Fewer blocks Penalty
compromises & Miss Rate

\ Temporal Locality
—_—
Block Size Block Size Block Size

QIn general, Average Memory Access Time

= Hit Time + Miss Penalty x Miss Rate
32

Cache so far

= The Principle of Locality:
= Program likely to access a relatively small portion of the address

space at any instant of time
= Temporal Locality: Locality in Time
= Spatial Locality: Locality in Space

= Three major categories of cache misses:
= Compulsory misses: sad facts of life. Example: cold start misses
= Conflict misses: increase cache size and/or associativity
Nightmare Scenario: ping pong effect!
= Capacity misses: increase cache size
= Cache design space
= total size, block size, associativity (replacement policy)
= write-hit policy (write-through, write-back)

= write-miss policy (write allocate, write buffers)
33

