2010-05-13 20104 A4 TOKYO TECH

* HERT—FTIF v £— ()

5. JOtwy ST 5ER

EH S HEIRER
kise_at_cs.titech.ac.jp
W6415#&E= AHEH13:20 — 14:50

aAVE1—FUN—FDz7) DHEMLEER

avEa—4%
e Fotyy
[1 Aﬁ
k i
R el
“D F—H5R i

IOty Y FRREBENCHRET —FEMYMH T ANEBIET—SERIBER
SETAL, HARBRRERBEENOT —HEHAT . GIEERER, T2/,
EREE. ANKE. TLTHAEBOHEEIEET HE5E% 5,

HE: /(8= & ARY—, aVE21—2DERERE 2
MIPSOERHILEEDDRATYT (RT—D) FHERERA)
LERE TIFILIY ALU (Arithmetic Logic Unit)

s IFRF—
AEYDOHEEITIVFTS.
= IDRT—Y
BEETI—RBH)LELND, LOREDEEHAHT.
s EXRATF—Y
BEREOETERIITRLRADERZETS.
= MEMRF—Y
PBETHNIE, T—2-AFR)DOARSURIZTIER
5.
= WBRF—Y
WETHNIE, HEREELORFZEEAD.

-

, S
L1 3=

-J‘Pc-

W
_: Poad
roglter 1 L [Pead
datat address
"] register 2
Instruction
| write Hiverd [31:0) >“°
rogister
Instruction 4—]
of Write memory
data Reglsters
R ——— PN
LORETFA I SRAEY

TOtvHDT—HIRR (T IL-HA5)L)

‘ op ‘ rs ‘ rt ‘ rd ‘shamt ‘ funct ‘
0x800 add $tO, $s1, $s2 [add $8, $17, $181]

Machine Language - Add Instruction

= Instructions, like registers and words of data,
are 32 bits long

= Arithmetic Instruction Format (R format):

$t0, $s1) $s2
‘ ooy ‘ rs ‘ rt ‘ rd ‘ shamt ‘ funct ‘

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result's destination

shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i TaEvHDTF—RISR (T IL-HAI)L)

[op [rs [rt [16bitimmediate | format
0x804 addi $t0, $t1, -1 [addi $8, $9, -1]

i TaEvHDTF—RISR (T IL-HA)L)

[op [rs [rt | 16bitimmediate | format
0x808 Iw $t0, 24($s2) [Iw $8, 24($18)]

* TOtvYDT—HIRR (T IL-HA5)L)

L op [s [it | 16 bit immediate | format
sw $t0, 24($s2) [sw $8, 24($18)]

* TOtvYDT—HIRR (T IL-HA5)L)

[op [rs [n | 16 bit immediate | format
beq $s0, $s1, Label [beq $16, $17, Label]

!.| Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:
Jj label #go to label

= Instruction Format (J Format):

‘ op ‘ 26-bit address
from the low order 26 bits of the jump instruction

i TOEvHDF—RINR (VT IL-HAT)L)

l— one clock period —|

Program

200 400 60O 800, 1000 1200 1400 1800 1800
cul
e Time T T T T T T T T =
{in Instnictions)

b $1, 100080} "

w §2, 200(%0) B ps.

b $3, 300($0)

Ty AARICEHERE

State L State
Element — Comblngtlonal — Element
1 logic 2
Clock cycle m

7Oy DF—HINR(TILF-HA49)L)

IF ID EX MEM WB
L+ one clock e oneclock
period | ; U operiod

TOEv DT —RINR(RILF-HA49)L)

IF ID EX MEM WB
L+ one clock | e oneclock
period ! [period

INMTS54 0 (pipelining)

Program

S gy, WO %0 W0 WO o o U0 o wn

{in Instructions)

hﬂ.‘wwll”“,';‘:;""m AL |3;:, g

w2 20080 woops | mea|ees| au [2 [ee

I $3, 300$D) 800 ps |
;p-‘

Program
exccition 1, 200 400 600 BOD 1000 1200 1400
ime T T T T T T T

{in Instuctions)
w g1, ool "] [me] mo [22, [l
tw $2, 20060) Zo0ps || || A | 25, [res]

wes, 0w Toope |] A0 | o

|

200ps 200ps 200ps 200 ps 200ps
16

INMTS54 0 (pipelining)

INMTS54 0 (pipelining)

Program
anaculion
Tume

{in Instructions)
W s1.lwmrm
W o§2, 20080) " soops | g
b $3, 3004$0) BOO ps teich

200 400 800 BOD 1000 1200 1400 1600 1800
T T T T T T T —

Program
ccction 200 400 600 800 1000 1200 1400

order T T
{in instructions)

e $1, 1000$0) "5
w $2, 200(50) 200 pa | ™"
w $3, 30080)

200ps 200ps 200ps 200 ps 200ps
18

TOEyHN3IDNERAR

s YUT AL
s YILFHAI)L
» IRATSA 08

Discussion

= RISC (Reduced Instruction Set Computer)
= CISC (Complex Instruction Set Computer)

19
1A-32 Registers and Data Addressing 1A-32 Typical Instructions
= Four major types of integer instructions:
= Registers in the 32-bit subset that originated with 80386 = Data movement including move, push, pop
Name e = Arithmetic and logical (destination register or memory)
Eax GPRO = Control flow (use of condition codes / flags)
ecx oPR1 = String instructions, including string move and string compare
eox oer2
o e e T
EBP GPRS JMP name E1P=name
ESI GPR6 CALL name SP=5P-4; M[SP]=E [P+5; EIP=name ;
EDI GPRT MOVW ERX, [EDT+45] ERX=M[EDI+45]
PUSHEST SP=SP-4; M[SPI=ES]

s Code segmentpoiter FOP EDL EDI=M[SP]; SP=5P+1

ss Stack segment pointer (top of stack) ADD EAL. 46765 EAl=EAN+6T6R

oS Data segment pointer 0 TEST EDY, $42 ‘Set condition code (Nags) with EDX and 42

ES Data segment pointer 1. MOVSL M[EDTI=M[EST]:

EDI=EDI+4; ESI=ESI+4
s Dataseqment poiner 2
os Dt ssgment pointer 3 FIGURE 243 Some typical 1A-32 Instructions and their functions. A list of frequent operatiors.
appears in Figure 2.44. The CALL saves the EIP of the next instruction on the stack. { EIF is the Intel PC.)
EP Instruction pointer (PC)
erLacs Condiioncodes
21 22

I1A-32 instruction Formats

= Typical formats: (notice the different lengths)

& JE EIP + displacement
4 a4 [

Cond
E Displacement
[=_ [Tospwenen]

o] ot

MOV EBX,[EDI+45]
6 11 8 8

[Top [ete [oeeener]

o
-
=
R
oo .
[dl]

L TEST EDX, 142
T 2

ot o[e

23

EAXRRARX

= general-purpose register architecture
= stack architecture

= accumulator architecture

stack queue accumulator
push| + pop enqueue l_T;LI
dequeue

= 3FARSUK
= 2FRSUKR
= SuperH ADDRm, Rn :Rn <-Rn+ Rm

= MIPS Arithmetic Instruction Format (R format):

@dd $to, $sD, Gs2

rs ‘ rt ‘ rd ‘shamt‘ funct ‘

