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‘ op ‘ rs ‘ rt ‘ rd ‘shamt ‘ funct ‘
0x800 add $tO, $s1, $s2 [add $8, $17, $181]

Machine Language - Add Instruction

= Instructions, like registers and words of data,
are 32 bits long

= Arithmetic Instruction Format (R format):

$t0, $s1) $s2
‘ ooy ‘ rs ‘ rt ‘ rd ‘ shamt ‘ funct ‘

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result's destination

shamt 5-bits shift amount (for shift instructions)
funct  6-bits function code augmenting the opcode

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005




i TaEvHDTF—RISR (T IL-HAI)L)

[ op [ rs [ rt [  16bitimmediate | format
0x804 addi $t0, $t1, -1 [ addi $8, $9, -1]

i TaEvHDTF—RISR (T IL-HA)L)

[ op [ rs [ rt |  16bitimmediate | format
0x808 Iw $t0, 24($s2) [ Iw $8, 24($18) ]

* TOtvYDT—HIRR (T IL-HA5)L)

L op [ s [ it | 16 bit immediate | format
sw $t0, 24($s2) [ sw $8, 24($18) ]

* TOtvYDT—HIRR (T IL-HA5)L)

[ op [ rs [ n | 16 bit immediate | format
beq $s0, $s1, Label [beq $16, $17, Label ]

!.| Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:
Jj label #go to label

= Instruction Format (J Format):

‘ op ‘ 26-bit address
from the low order 26 bits of the jump instruction

i TOEvHDF—RINR (VT IL-HAT)L)
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Discussion

= RISC (Reduced Instruction Set Computer)
= CISC (Complex Instruction Set Computer)

19
1A-32 Registers and Data Addressing 1A-32 Typical Instructions
= Four major types of integer instructions:
= Registers in the 32-bit subset that originated with 80386 = Data movement including move, push, pop
Name e = Arithmetic and logical (destination register or memory)
Eax GPRO = Control flow (use of condition codes / flags )
ecx oPR1 = String instructions, including string move and string compare
eox oer2
o e e T
EBP GPRS JMP name E1P=name
ESI GPR6 CALL name SP=5P-4; M[SP]=E [P+5; EIP=name ;
EDI GPRT MOVW ERX, [EDT+45] ERX=M[EDI+45]
PUSHEST SP=SP-4; M[SPI=ES]

s Code segmentpoiter FOP EDL EDI=M[SP]; SP=5P+1

ss Stack segment pointer (top of stack) ADD EAL. 46765 EAl=EAN+6T6R

oS Data segment pointer 0 TEST EDY, $42 ‘Set condition code (Nags) with EDX and 42

ES Data segment pointer 1. MOVSL M[EDTI=M[EST]:

EDI=EDI+4; ESI=ESI+4
s Dataseqment poiner 2
os Dt ssgment pointer 3 FIGURE 243 Some typical 1A-32 Instructions and their functions. A list of frequent operatiors.
appears in Figure 2.44. The CALL saves the EIP of the next instruction on the stack. { EIF is the Intel PC.)
EP Instruction pointer (PC)
erLacs Condiioncodes
21 22

I1A-32 instruction Formats

= Typical formats: (notice the different lengths)

& JE EIP + displacement
4 a4 [

Cond
E Displacement
[=_ [ Tospwenen]

o ] ot

MOV EBX,[EDI+45]
6 11 8 8

[ Top [ ete [oeeener]

o
-
=
R
oo .
[ dl]

L TEST EDX, 142
T 2

ot o[ e
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= general-purpose register architecture
= stack architecture

= accumulator architecture

stack queue accumulator
push| + pop enqueue l_T;LI
dequeue




= 3FARSUK
= 2FRSUKR
= SuperH ADDRm, Rn :Rn <-Rn+ Rm

= MIPS Arithmetic Instruction Format (R format):

@dd $to, $sD, Gs2

rs ‘ rt ‘ rd ‘shamt‘ funct ‘




