
1

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

５．プロセッサに関する議論

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2010-05-13

2

コンピュータ（ハードウェア）の古典的な要素

出典： パターソン ＆ ヘネシー、 コンピュータの構成と設計

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

プロセッサは記憶装置から命令とデータを取り出す。入力装置はデータを記憶装置
に書き込む。出力装置は記憶装置からデータを読みだす。制御装置は、データパス、
記憶装置、入力装置、そして出力装置の動作を指定する信号を送る。

MIPSの基本的な５つのステップ（ステージ）

IFステージ

メモリから命令をフェッチする．

IDステージ

命令をデコード（解読）しながら，レジスタの値を読み出す．

EXステージ

命令操作の実行またはアドレスの生成を行う．

MEMステージ

必要であれば，データ・メモリ中のオペランドにアクセス

する．

WBステージ

必要であれば，結果をレジスタに書き込む．

3

主な構成要素（１）

レジスタ

レジスタファイル

マルチプレクサ

命令メモリ

ALU (Arithmetic Logic Unit)

プロセッサのデータパス（シングル・サイクル）

op rs rt rd shamt funct
0x800 add $t0, $s1, $s2 [add $8, $17, $18]

6
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Instructions, like registers and words of data,
are 32 bits long
Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

2

プロセッサのデータパス（シングル・サイクル）

0x804 addi $t0, $t1, -1 [addi $8, $9, -1]

op rs rt 16 bit immediate I format

プロセッサのデータパス（シングル・サイクル）

0x808 lw $t0, 24($s2) [lw $8, 24($18)]

op rs rt 16 bit immediate I format

プロセッサのデータパス（シングル・サイクル）

sw $t0, 24($s2) [sw $8, 24($18)]

op rs rt 16 bit immediate I format

プロセッサのデータパス（シングル・サイクル）

beq $s0, $s1, Label [beq $16, $17, Label]

op rs rt 16 bit immediate I format

MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

Instruction Format (J Format):

op 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

プロセッサのデータパス（シングル・サイクル）

one clock period

3

エッジトリガ方式による設計

Clock cycle

State
Element

1

State
Element

2

Combinational
logic

プロセッサのデータパス（マルチ・サイクル）

one clock
period

one clock
period

IF ID EX MEM WB

プロセッサのデータパス（マルチ・サイクル）

one clock
period

one clock
period

IF ID EX MEM WB

パイプライン処理 (pipelining)

16

パイプライン処理 (pipelining)

17

パイプライン処理 (pipelining)

18

4

プロセッサの３つの実現方式

シングル・サイクル

マルチ・サイクル

パイプライン処理

19

Discussion

RISC (Reduced Instruction Set Computer)
CISC (Complex Instruction Set Computer)

21

IA-32 Registers and Data Addressing

Registers in the 32-bit subset that originated with 80386

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use
031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

22

IA-32 Typical Instructions

Four major types of integer instructions:
Data movement including move, push, pop
Arithmetic and logical (destination register or memory)
Control flow (use of condition codes / flags)
String instructions, including string move and string compare

23

IA-32 instruction Formats

Typical formats: (notice the different lengths)
a. JE EIP + displacement

b. CALL

c. MOV EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacementr/m
Postbyte

Offset

DisplacementCondi-
tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8

基本記憶方式

general-purpose register architecture
stack architecture
queue architecture
accumulator architecture

push pop

stack

enqueue

queue

dequeue

accumulator

5

オペランド数

３オペランド

２オペランド

SuperH ADD Rm, Rn : Rn <- Rn + Rm

MIPS Arithmetic Instruction Format (R format):
add $t0, $s1, $s2

op rs rt rd shamt funct

