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整数(integer)の表現

コンピュータは決まったビット幅を単位としてデータを処理．

例えば，８ビットコンピュータ は，８ビット単位で処理

ｎビットの整数表現は，２＾ｎ （2のn乗）種類の整数を表現

できる．（しか表現できない！）

８ビットであれば，２＾８ ＝ ２５６ 種類の整数．

表現できる範囲には限りがある．

効率の良い表現を利用して，資源を有効に活用する！

整数表現

符号なし表現

符号つき絶対値表現

２の補数表現
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整数：２の補数表現（１）

多くの計算機では２の補数 (two’s complement)
表現が利用される．

２の補数の利点

最上位ビットのみで正負判定が可能．

正負の反転が容易．

ビット幅の異なるデータへの変換が容易．

符号なし整数と同じハードウェアで加算を実装できる．
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整数：２の補数表現（２）

その前に，１の補数 (one’s complement)
全てのビットを反転することで，マイナスを表現

128
種類

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710
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整数：２の補数表現（３）

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の１の補数表現 負の数の２の補数表現

２の補数では， ー１２８ ～ １２７ までの数を表現できる．

２の補数
（１の補数で表された数に１を加えたもの）を負の数とする．
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整数：２の補数表現（４）

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数とする．

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の２の補数表現
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２の補数表現では，正負の反転を簡潔に実現できる！
正数から負数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

負数から正数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

整数：２の補数表現（５）

NOT

x

-x

1

ALU, add

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数
とする．
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整数：２の補数表現（６）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

符号拡張

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 1111 11112 = -110

1111 1111 11102 = -210

…

1111 1000 00112 = -12510

1111 1000 00102 = -12610

1111 1000 00012 = -12710

1111 1000 00002 = -12810
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整数：２の補数表現（７）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．
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２の補数の加算（１）

符号を意識することなく，符号なし整数の加算と
同様に計算できる．

0 0 0 0  0 1 1 1 2  =   7 10

+  0 0 0 0  0 1 1 0 2  =   6 10

0 0 0 0  1 1 0 1 2  = 13 10

0 0 0 0  1 1 0桁上げ
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２の補数の加算（２）

符号を意識することなく，符号なし整数の加算と
同様に計算できる．

0 0 0 0  0 1 1 1 2  =   7 10

+  1 1 1 1  1 0 1 0 2  =  -6 10

0 0 0 0  0 0 0 1 2  =   1 10

1 1 1 1  1 1 0桁上げ

減算： X – Y  = X + (- Y)
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整数の表現のまとめ

符号なし表現

符号つき絶対値表現

１の補数表現

２の補数表現

最上位ビットのみで正負判定が可能．

正負の反転が容易．

ビット幅の異なるデータへの変換が容易．

符号なし整数と同じハードウェアで符号付き加算を実装

できる．
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実数

少数を含む数値を取り扱う．

実数の例
3.1419926… (π)
0.000000001,  1.0 x 10-9

3,155,760,000, 3.1556 x 109

科学記数法： 小数点の左側には数字を一つしか書かない．

科学記数法で書いた数値で先頭に０がこないものを正規化数と呼ぶ．
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固定小数点表現

あまり利用されない！

小数点の位置を固定する．

1 0 1 0 11 0 0

符号ビット
小数点

124 0.5 0.25 0.125 0.0625

- 2.625
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浮動小数点表現（１）

小数点位置が変動

科学記数法で数値で先頭に０がこない正規化数
を利用．

1.xxxxxxxxx × 2
yyyy

仮数部

指数部

符号 指数部 仮数部
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浮動小数点表現（２）

IEEE754

符号 指数部 仮数部

単精度
（３２ビット）

１ビット ８ビット ２３ビット

符号 指数部 仮数部

倍精度
（６４ビット）

１ビット １１ビット ５２ビット
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浮動小数点表現（３）

誤差
実数は不可算無限

決められたビットで表現できる数は有限

丸め誤差が発生

表現できないほど大きな数

表現できないほど小さな数

非常に大きな数と，非常に小さな数の間の演算

10進数で 0.10 は，
2進数で 0.0001100110011… どうすれば良いか？

Packed decimal
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コンピュータ（ハードウェア）の古典的な要素

出典： パターソン ＆ ヘネシー、 コンピュータの構成と設計

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

プロセッサは記憶装置から命令とデータを取り出す。入力装置はデータを記憶装置
に書き込む。出力装置は記憶装置からデータを読みだす。制御装置は、データパス、
記憶装置、入力装置、そして出力装置の動作を指定する信号を送る。

MIPSの基本的な５つのステップ（ステージ）

IFステージ

メモリから命令をフェッチする．

IDステージ

命令をデコード（解読）しながら，レジスタの値を読み出す．

EXステージ

命令操作の実行またはアドレスの生成を行う．

MEMステージ

必要であれば，データ・メモリ中のオペランドにアクセス

する．

WBステージ

必要であれば，結果をレジスタに書き込む．
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主な構成要素（１）

レジスタ

レジスタファイル

マルチプレクサ

命令メモリ

ALU (Arithmetic Logic Unit)

プロセッサのデータパス（シングル・サイクル）

op           rs rt rd shamt funct
0x800   add $t0, $s1, $s2    [ add $8, $17, $18 ]

23
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Instructions, like registers and words of data, 
are 32 bits long
Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op           rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

主な構成要素（２）

符号拡張 ２ビット 左にシフト
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Exercise

氏名，学籍番号，
学籍番号マーク欄(右詰で)

0x804 addi $t0, $t1, -1 [ addi $8, $9, -1 ] 

I  formatop           rs rt 16 bit immediate

32ビットの命令列を2進数で示せ．

この命令を実行する際，
確定するデータパスに値を示せ．

プロセッサのデータパス（シングル・サイクル）

0x804 addi $t0, $t1, -1 [ addi $8, $9, -1 ] 

op           rs rt 16 bit immediate I  format

プロセッサのデータパス（シングル・サイクル）

0x808 lw $t0, 24($s2)    [ lw $8, 24($18) ]

op           rs rt 16 bit immediate I  format

Exercise

0x808 lw $t0, 24($s2)    [ lw $8, 24($18) ]

I  formatop           rs rt 16 bit immediate

32ビットの命令列を2進数で示せ．

この命令を実行する際，
確定するデータパスに値を示せ．

プロセッサのデータパス（シングル・サイクル）

sw $t0, 24($s2)    [ sw $8, 24($18) ]

op           rs rt 16 bit immediate I  format

プロセッサのデータパス（シングル・サイクル）

beq $s0, $s1, Label    [beq $16, $17, Label ]

op           rs rt 16 bit immediate I  format
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プロセッサのデータパス（シングル・サイクル）

one clock period
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アナウンス

講義スライドおよびスケジュール

www.arch.cs.titech.ac.jp
講義日程が変更になることがあるので
頻繁に確認すること．


