
1

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

4．データ形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2010-05-06

2

整数(integer)の表現

コンピュータは決まったビット幅を単位としてデータを処理．

例えば，８ビットコンピュータ は，８ビット単位で処理

ｎビットの整数表現は，２＾ｎ （2のn乗）種類の整数を表現

できる．（しか表現できない！）

８ビットであれば，２＾８ ＝ ２５６ 種類の整数．

表現できる範囲には限りがある．

効率の良い表現を利用して，資源を有効に活用する！

整数表現

符号なし表現

符号つき絶対値表現

２の補数表現

3

整数：２の補数表現（１）

多くの計算機では２の補数 (two’s complement)
表現が利用される．

２の補数の利点

最上位ビットのみで正負判定が可能．

正負の反転が容易．

ビット幅の異なるデータへの変換が容易．

符号なし整数と同じハードウェアで加算を実装できる．

4

整数：２の補数表現（２）

その前に，１の補数 (one’s complement)
全てのビットを反転することで，マイナスを表現

128
種類

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

5

整数：２の補数表現（３）

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の１の補数表現 負の数の２の補数表現

２の補数では， ー１２８ ～ １２７ までの数を表現できる．

２の補数
（１の補数で表された数に１を加えたもの）を負の数とする．

6

整数：２の補数表現（４）

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数とする．

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の２の補数表現

2

7

２の補数表現では，正負の反転を簡潔に実現できる！
正数から負数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

負数から正数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

整数：２の補数表現（５）

NOT

x

-x

1

ALU, add

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数
とする．

8

整数：２の補数表現（６）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

符号拡張

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 1111 11112 = -110

1111 1111 11102 = -210

…

1111 1000 00112 = -12510

1111 1000 00102 = -12610

1111 1000 00012 = -12710

1111 1000 00002 = -12810

9

整数：２の補数表現（７）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

10

２の補数の加算（１）

符号を意識することなく，符号なし整数の加算と
同様に計算できる．

0 0 0 0 0 1 1 1 2 = 7 10

+ 0 0 0 0 0 1 1 0 2 = 6 10

0 0 0 0 1 1 0 1 2 = 13 10

0 0 0 0 1 1 0桁上げ

11

２の補数の加算（２）

符号を意識することなく，符号なし整数の加算と
同様に計算できる．

0 0 0 0 0 1 1 1 2 = 7 10

+ 1 1 1 1 1 0 1 0 2 = -6 10

0 0 0 0 0 0 0 1 2 = 1 10

1 1 1 1 1 1 0桁上げ

減算： X – Y = X + (- Y)
12

整数の表現のまとめ

符号なし表現

符号つき絶対値表現

１の補数表現

２の補数表現

最上位ビットのみで正負判定が可能．

正負の反転が容易．

ビット幅の異なるデータへの変換が容易．

符号なし整数と同じハードウェアで符号付き加算を実装

できる．

3

13

実数

少数を含む数値を取り扱う．

実数の例
3.1419926… (π)
0.000000001, 1.0 x 10-9

3,155,760,000, 3.1556 x 109

科学記数法： 小数点の左側には数字を一つしか書かない．

科学記数法で書いた数値で先頭に０がこないものを正規化数と呼ぶ．

14

固定小数点表現

あまり利用されない！

小数点の位置を固定する．

1 0 1 0 11 0 0

符号ビット
小数点

124 0.5 0.25 0.125 0.0625

- 2.625

15

浮動小数点表現（１）

小数点位置が変動

科学記数法で数値で先頭に０がこない正規化数
を利用．

1.xxxxxxxxx × 2
yyyy

仮数部

指数部

符号 指数部 仮数部

16

浮動小数点表現（２）

IEEE754

符号 指数部 仮数部

単精度
（３２ビット）

１ビット ８ビット ２３ビット

符号 指数部 仮数部

倍精度
（６４ビット）

１ビット １１ビット ５２ビット

17

浮動小数点表現（３）

誤差
実数は不可算無限

決められたビットで表現できる数は有限

丸め誤差が発生

表現できないほど大きな数

表現できないほど小さな数

非常に大きな数と，非常に小さな数の間の演算

10進数で 0.10 は，
2進数で 0.0001100110011… どうすれば良いか？

Packed decimal

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

4．プロセッサの動作原理

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2010-05-06

4

19

コンピュータ（ハードウェア）の古典的な要素

出典： パターソン ＆ ヘネシー、 コンピュータの構成と設計

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

プロセッサは記憶装置から命令とデータを取り出す。入力装置はデータを記憶装置
に書き込む。出力装置は記憶装置からデータを読みだす。制御装置は、データパス、
記憶装置、入力装置、そして出力装置の動作を指定する信号を送る。

MIPSの基本的な５つのステップ（ステージ）

IFステージ

メモリから命令をフェッチする．

IDステージ

命令をデコード（解読）しながら，レジスタの値を読み出す．

EXステージ

命令操作の実行またはアドレスの生成を行う．

MEMステージ

必要であれば，データ・メモリ中のオペランドにアクセス

する．

WBステージ

必要であれば，結果をレジスタに書き込む．

20

主な構成要素（１）

レジスタ

レジスタファイル

マルチプレクサ

命令メモリ

ALU (Arithmetic Logic Unit)

プロセッサのデータパス（シングル・サイクル）

op rs rt rd shamt funct
0x800 add $t0, $s1, $s2 [add $8, $17, $18]

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Instructions, like registers and words of data,
are 32 bits long
Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

主な構成要素（２）

符号拡張 ２ビット 左にシフト

5

Exercise

氏名，学籍番号，
学籍番号マーク欄(右詰で)

0x804 addi $t0, $t1, -1 [addi $8, $9, -1]

I formatop rs rt 16 bit immediate

32ビットの命令列を2進数で示せ．

この命令を実行する際，
確定するデータパスに値を示せ．

プロセッサのデータパス（シングル・サイクル）

0x804 addi $t0, $t1, -1 [addi $8, $9, -1]

op rs rt 16 bit immediate I format

プロセッサのデータパス（シングル・サイクル）

0x808 lw $t0, 24($s2) [lw $8, 24($18)]

op rs rt 16 bit immediate I format

Exercise

0x808 lw $t0, 24($s2) [lw $8, 24($18)]

I formatop rs rt 16 bit immediate

32ビットの命令列を2進数で示せ．

この命令を実行する際，
確定するデータパスに値を示せ．

プロセッサのデータパス（シングル・サイクル）

sw $t0, 24($s2) [sw $8, 24($18)]

op rs rt 16 bit immediate I format

プロセッサのデータパス（シングル・サイクル）

beq $s0, $s1, Label [beq $16, $17, Label]

op rs rt 16 bit immediate I format

6

プロセッサのデータパス（シングル・サイクル）

one clock period

32

アナウンス

講義スライドおよびスケジュール

www.arch.cs.titech.ac.jp
講義日程が変更になることがあるので
頻繁に確認すること．

