2010-04-22 20104 Fi%:# TOKYO TECH

* HERT—FTIF v £— ()

3. mmix, PRLREERRK

EH S HEIRER
kise_at_cs.titech.ac.jp
W6415#&E= AHEH13:20 — 14:50

Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

2
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
SEE MIPS ISA So Far
Category Instr Op Code Example Meaning
Arithmetic | add 0and32 | add Ssl, $s2, $3 Ss1 = $52 + $53
N R 1.-'/— gn‘:;o subtract Oand34 | sub $si,$s2, $s3 $s1 = $s2 - $s3
s OVEI—SDOBBRERE EIMR. /15— add immediate 8 addi $s1, 852, 6 $s1= 852+ 6
VoA —(REAXE R). BEBP or immedate 13 ori $s1, $s2, 6 $51=$52V 6
#t. 2006 Data Transfer | load word 35 W $s1, 24($52) $s1 = Memory($s2+24)
%‘/3";7577#?’7?« ERNTTO—F FUR (1 format) store word 43 sw $s1, 24($s2) Memory(§s2+24) = $s1
pikit, 2008
A Y load byte 32 I $s1, 25($s2) $s1 = Memory($s2+25)
HE #— & ERESH 1989 store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1
HAMRATLIE, N
HE A LR % MR 1088 load upper imm 15 [wiossie $s1= 6% 2
avta aé;:\;,ﬂ:é?ngi Cond. Branch | br on equal 4 beq $s1, $s2, L if ($51==8s2) go to L
BE A DB S BRY, 1905
#ga;_*v__yﬂ‘ = §(')r‘f‘":() br on not equal 5 bne $s1, §2, L if (351 1=$52) go to L
8K Bt F BRE, 1905 set on less than Oand42 | st Ssi, $s2, $s3 if ($52<853) $51=1 else
$51=0
set on less than 10 slti $s1, $s2, 6 if ($52<6) $s1=1 else
immediate $s1=0
Uncond. jump 2 i 2500 go to 10000
;”;‘;fmal)@ & [jump register Oand8 | jr st 9o to $t1
3 jump and link 3 jal 2500 o to 10000; $ra=PC+4 4
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: How About Larger Constants?

= We'd also like to be able to load a 32 bit constant into a
register, for this we must use two instructions
= a new "load upper immediate" instruction
lui $t0, 1010101010101010
[16 [o | 8 | 1010101010101010

= Then must get the lower order bits right, use
ori $t0, $t0, 4010101010101010

1010101010101010 0000000000000000
0000000000000000 1010101010101010

[1010101010101010 | 1010101010101010 |

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

Aside: Loading and Storing Bytes

= MIPS provides special instructions to move bytes
Ib $t0, 1($s3) #load byte from memory
sb $t0, 6($s3) #store byte to memory

‘ op ‘ rs ‘ rt ‘ 16 bit offset ‘

= What 8 bits get loaded and stored?
= load byte places the byte from memory in the rightmost 8 bits of
the destination register
= what happens to the other bits in the register?
= store byte takes the byte from the rightmost 8 bits of a register
and writes it to a byte in memory
= what happens to the other bits in the memory word?

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

Byte Addresses

= Since 8-bit bytes are so useful, most architectures
address individual bytes in memory
= The memory address of a word must be a multiple of 4
(alignment restriction)
= Big Endian:

= leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, SPARC, HP PA

» Little Endian:

= rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little endian byte 0
0

msb ‘ ‘ ‘ ‘ ‘ Isb

0 1 2 3
big endian byte 0

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

Aside: Spilling Registers

= What if the callee needs more registers? What if the
procedure is recursive?

= uses a stack — a last-in-first-out queue — in memory for
passing additional values or saving (recursive) return

address(es; .
(e2) One of the general registers,

$sp, is used to address the
stack (which “grows” from high
address to low address)

add data onto the stack — push

$sp=$sp-4
data on stack at new $sp

high addr

top of stack [—$sp

remove data from the stack — pop
low addr data from stack at $sp
$sp=$sp+4

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

MIPS R3000 ISA

Instructions for Accessing Procedures

= Instruction Categories Registers) .
. = MIPS procedure call instruction:
= Computational - - -
Load / Store RO - R31 jal Procedure-Address #jump and link
.
« Jump and Branch = Saves PC+4 in register $ra to have a link to the next
« Floating Point instruction for the procedure return
= Memory Management = Machine format (J format):
= Special
[op | 26 bit address
3 Instruction Formats: all 32 bits wide = Then can do procedure return with a
[op [rs [t [ra [sa [tunct | Rformat Jr $ra #return
oP rs rt Immediate (16bit I format = Instruction format (R format):
()
‘ OP | jump target (26bit) ‘ J format ‘ on ‘ s ‘ ‘ ‘ ‘ funct ‘
10
Adapted from Computer Organization and Design, _Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design, _Patterson & Hennessy. © 2005
Aside: MIPS Register Convention MIPS ISA So Far
Category Instr Op Code Example Meaning
Name Register Usage Preserve Arithmetic add Oand32 | add $s1, $s2, $s3 $51 = $52 + $53
Number on call? g"“’;a'() subtract Oand34 | sub $sl,$s2, $s3 $s1 = $s2 - $s3
$zero 0 constant 0 (hardware) n.a. add immediate 8 addi $s1, $s2, 6 $s1=9s2 + 6
or immediate 13 ori $sl, $s2, 6 $s1 = $s2 v 6
$at 1 reserved for assembler n.a. Data Transfer | load word 35 W $s1, 24($52) $s1 = Memory(8s2-+24)
$vO0 - $v1 2-3 returned values no (1 format) store word 43 sw $s1, 24($52) Memory(§s2+24) = $s1
$a0 - $a3 4-7 arguments yes load byte 32 Ib $s1, 25($52) $s1 = Memory($s2+25)
by b $s1, 25($s: $: =8
$t0 - $t7 8-15 temporaries no store byte 40 S| 51, 25($52) Memory($s2+25) = $s1
load upper imm 15 i $s1, 6 $51=6* 216
$s0 - $s7 16-23 saved values yes Cond. Branch | br on equal 4 beq $si, $52, L if ($s1==$52) go to L
$t8 - $t9 24-25 temporaries no §(')r‘f‘":() br on not equal 5 bne $s1, $s2, L if (951 1=8s2) go to L
$gp 28 global pointer yes set on less than 0 and 42 slt $s1, $s2, $s3 g5(1$:53<$53) $s1=1 else
$sp 29 stack pointer yes set on less than 10 slti $s1, $s2, 6 if ($52<6) $s1=1 else
immediate 1=
$fp 30 frame pointer yes Uncond. jump 2 j 2500 go to 10000
$ra 31 return addr (hardware) yes i,”;';fmal)@ & [[jump register oands |ijr st go to 81
11 jump and link 3 jal 2500 go to 10000; $ra=PC+4 12
Adapted from Computer Organization and Design, _Patterson & Hennessy. © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

BEE

K5, ZEES,
FHBESI—IH(BERT)

£ AR Arch |

» TEVISETRE.

swap (int v[], int k)
(iy sy

int temp;

temp = v[k];
v[k]l = v[k+1];
v[k+1] = temp;

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

BEE

swap:
add $t1, $al, $al #
add $t1, $t1, $t1 # $t1 =k * 4;
add $t1, $a0, $t1 # $t1 = &v[k]:

Iw $t0, 0($t1) # $t0 = vIk];

lw #
sW #
sW #
jr $ra # return

sll (shift left logical) $t1, $al, 2
14

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i Exercise 2

void max (int v[], int n)
{
int I;
for (i =1; i <n; i +=1){
if (v[i-11 > v[il) swap(v, i-1);

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i Exercise 3

void sort (int v[], int n)
{
int i, j;
for (i =0; i <n;i+=1){
for (j=i-1; j>=0 && v[jI>v[j+11;: j-=1) swap(v, j);
1

16
Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

2010%F RiT%:#) TOKYO TECH

* AEET—XTIOF v B (B)

F—azt

HHE - HEIFER
kise_at_cs.titech.ac.jp
W6413EE=E KEH13:20 — 14:50

‘ EH (integer) DRI

s OAVE1—AERF-FEYMBEELLTT—4E0IE.
« BIZE, sEvhavEa1—4 (&, 8E VBT TOE
s nEYFOBHRBIL, 2°n QONR)FEHEOBHERE
TES. (LOKRBETEGRLN!)
« BEWhTHNIE, 278 = 256 BEOEH.
« RETEHBEICIEBRYNHS.
« DERORVERZFALT BEREZEHISERTS !
= BHRE
- BELELERR
« HFEOESHESHERE
- 2OWHRE

18

‘ T—EDRE

= MSB: Most Significant Bit, & L{EZD#7
= LSB: Least Significant Bit, & T DHT
MSB LSB

[ofoJofofsfo]afs]

8EYk (1/31F) OF—4

6E Uk 5Ewk 5Ewk 5Ewk 5Ewk 6wk

32Evk (4131F) OF—4 19

:-‘ B FSELRE

s HEBEHME2EHTRIETS.
« 110 THNIE, 1011 ELTFREYMERDS.
» LRDESZEVRE0TEDS.
» 8EYRTHMNIE, 0~255FTND256ANDEHER
R/TE5.
 BRGRRAE.
s BHERBFTEGL!

(ofofofofafofa]a]

8EwWk (1/30F) OF—4%
20

B S OSHRAERR (1)

» HEBEmME2EHRTRIET 5.
s 110 THNIE, 1011 ELTTHEEVRERDHS.
. EEL REREVMRVTHEERT (FBEYL).
. mAERLIE, FEEVNED, BELIE1ETS.
. BolEYrEOTHEDS.
« BEELEREOBATIRER
» BEYNTHMNIL, - 127 ~127 ETOH255BDEHER
R/TEH7?

“aw [0]oJofo]1]o]1]1]

-1110/1‘0‘0‘0‘1‘0‘1‘1‘

HEEVH 8EYE (1/31F) OF—4 21

B - FEOSHEMERIE (2)
= BEVRTHNIE, - 127 ~127 ETH255FNDE

HERBTES?
s ESLT256DHERTTELLDMN?

22

B S OTHRAERR (2)

= SBEVRTHNIL, - 127 ~127 ETH255FNE
HERBRTES?

n ESLT256EDHERRTELELOMN?

s ThIE, FOICELEED2ORHEIMND !
« TOUSTHMBEERITERELS.
» FEOEERERRAFIASASZLF DI !

+127 +0

0 -127

23

B S OSTHRAERR (3)

» £5— [, 8EVMR®D, HEOEFEAERKEEHRD

0000 00002 = +010 1000 00002 = -010
0000 00012 = +110 1000 00012 = =T1o
0000 00102 = +210 1000 00102 = —210

g% .
0111 11012 = +12510 1111 11012 = -12510

0111 11102 = +12610 1111 11102 = 12610
0111 11112 = #1270 1111 11112 = =127

FEOEHAEREAFASNDILFT DA !

24

;‘ BY - 20MHBRE)

s ZLOFEHTIT20OHHE (two’s complement)
REMNFAEIND.

" 20DFHHDF R
» REGIEYROHAH TIESFIEA TEE.

BY - 20MHBKRE(2)

= ZORIZ, 1D (one’s complement)
» BTOEYNERETHET, Y1FRERE

0000 00002 = +010
0000 00012 = +110
128 0000 00102 = +210

1111 11112 = =010
1111 11102 = =T
1111 11012 = =210

» EADRENES. e :
« EYMEDBEDTF—A~DERAES. 0111 11012 = +12510 1000 0010z = ~12510
. FEAHLEHERCN—RY T 7 TNEsEETES. 0111 11102 = +12610 1000 00012 = -12610
0111 11112 = #1271 1000 0000z = ~12710
25 26
B 2DBHRE(3) BEH 20WMHKRE(4)
(I OMHETRENIBINEMAT-LDIEADKES B. - 1 DBHTRSNER(EVR ORI [S1EMALDEADRET 5.

0000 00002 = +010 1111 11112 = 010
0000 00012 = +110 1111 11102 = =T1o 1111 11112 = ~T1o
0000 00102 = +210 1111 11012 = =210 1111 11102 = -210

0111 11012 = +12510 1000 00102 = —12510 1000 00112 = -12510
0111 11102 = +12610 1000 00012 = -12610 1000 00102 = —12610
0111 11112 = +12710 1000 00002 = -12710 1000 00012 = —12710

1000 00002 = -12810

BDHD20HHERE
111 11112 = =110
1111 11102 = =210

0000 00002 = +010
0000 00012 = +110
0000 00102 = +210

1000 00112 = 12510
1000 00102 = -12610
1000 00012 = -12710
1000 00002 = -12810

0111 11012 = +12510
0111 11102 = +12610
0111 11112 = #1270

BOHD1DHBRE BOHD20MMKIR
20 TIE, —128 ~ 127 ETTCOPUERBRTES. 27 2
B - 20MHBERE(5) B - 20MHBERIE(6)
. 20 - B (11
. 1OBRCREINEB(EVFORER) S1EMA L DEEDE « EYMEDELST—EI~DEH @
£95. s fl: SEVEAD12E YD T—E~D LR
. 2OBMERTIE, TADORELHR-ERTES ! . HEEEONE [T

« EXENEBADOESR
« 2EBREDIL0ERETS. X
- BonT—RIC1EMZ 5.

« BENSEH~DOEH NOT 1
« 2EBRFEDIL0ERETS.
- BonfT—AIC1EmMZ 5.

ALU, add

29

=« EYMEZEOTLEEICE, HZEMEVIDOETHETAEEL.

1111 11112 = =110 1111 1111 11112 = =110
1111 11102 = =210 1111 1111 11102 = =210

e HEHE

1000 00112 = 12510 |:> 1111 1000 00112 = -12510
1000 00102 = -12610 1111 1000 00102 = -12610
1000 00012 = =12710 1111 1000 00012 = -12710

1000 00002 = -12810 1111 1000 00002 = -12810
30

BY - 20HBRE(7)

» FEHLE
« EYMEDERLST—EI~DEH @

W]

= fl: BEVEIS12EURDT—E~DEH
. HEHEOLE B (1T}

» EYMBZEOTLEICE, HEMEVIDOBETHET AL

31

2010-04-22 20104 Fi%:# TOKYO TECH

* HERT—FTIFv £— ()

3. mmix, PRLREERRK

EH S HEIRER
kise_at_cs.titech.ac.jp
W6415#&H= AHEH13:20 — 14:50

MIPS Immediate Instructions

= Small constants are used often in typical code

= Possible approaches?
= put “typical constants” in memory and load them
= create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !

addi $sp, $sp, 4 #Psp = $sp + 4
slti $t0, $s2, 15 #$t0 = 1 if $s2<15
= Machine format (I format):

16 bit immediate | format

= The constant is kept inside the instruction itself!
= Immediate format limits values to the range +215-1 to -2%5

[

rs

op

33

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

Machine Language - Load Instruction

= Load / Store Instruction Format (I format):
Iw $t0,; 24($s2)

‘ op rs ‘ rt ‘ 16 bit offset ‘
Memory
24, + $s2 = OXFFffffff
... 0001 1000 $t0|——____ | 0x120040ac
= — 0x12004094
.1010 1100 = $s2 %
0x120040ac
0x0000000c
0x00000008
0x00000004
0x00000000
data word address (hex) 34

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

MIPS Control Flow Instructions

= MIPS conditional branch instructions:
bne $s0, $sl1, Lbl #go to Lbl if $s0=$sl
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1
« Ex: if (i==j) h =i + j;
bne $s0, $sl1, Lbll

add $s3, $s0, $sl
Lbl1:

= Instruction Format (I format):

16 bit offset

rt

op ‘ rs

= How is the branch destination address specified?
35

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

Specifying Branch Destinations

= Use a register (like in lw and sw) added to the 16-bit offset
= Wwhich register? Instruction Address Register (the PC)
= its use is automatically implied by instruction

= PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction
= limits the branch distance to -2'5 to +2%5-1 instructions from the
(instruction after the) branch instruction, but most branches are

local anyway from the low order 16 bits of the branch instruction
16

branch dst
32 32 add address
L e 3 32
32
36

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

!-‘ TFIVR

BRERATINBLUVRTVa—L

= www.arch.cs.titech.ac.jp

 BEAENERICLAIENHIDT
SRERICHER T HIL.

37

