
1

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

３．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2010-04-22

2
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Acknowledgement

Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

3

参考書

コンピュータの構成と設計 第３版、パター
ソン＆ヘネシー（成田光彰 訳）、 日経ＢＰ
社、2006
コンピュータアーキテクチャ 定量的アプローチ 第4版
翔泳社, 2008
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995
計算機アーキテクチャ，

橋本 昭洋 著，昭晃堂，1995

4
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS ISA So Far

$s1 = $s2 v 6ori $s1, $s2, 613or immediate

if ($s2<6) $s1=1 else
$s1=0

slti $s1, $s2, 610set on less than
immediate

$s1 = 6 * 216lui $s1, 615load upper imm

$s1 = $s2 + 6addi $s1, $s2, 68add immediate

go to 10000; $ra=PC+4jal 25003jump and link

go to $t1jr $t10 and 8jump register

go to 10000j 25002jumpUncond.
Jump (J &
R format)

if ($s2<$s3) $s1=1 else
$s1=0

slt $s1, $s2, $s30 and 42 set on less than

if ($s1 !=$s2) go to Lbne $s1, $s2, L5br on not equal

if ($s1==$s2) go to Lbeq $s1, $s2, L 4br on equalCond. Branch
(I & R
format)

Memory($s2+25) = $s1sb $s1, 25($s2)40store byte

$s1 = Memory($s2+25)lb $s1, 25($s2)32load byte

43

35

0 and 34

0 and 32

Op Code

Memory($s2+24) = $s1sw $s1, 24($s2)store word

$s1 = Memory($s2+24)lw $s1, 24($s2)load wordData Transfer
(I format)

$s1 = $s2 - $s3sub $s1, $s2, $s3subtract

$s1 = $s2 + $s3add $s1, $s2, $s3addArithmetic
(R & I
format)

MeaningExampleInstrCategory

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

We'd also like to be able to load a 32 bit constant into a
register, for this we must use two instructions
a new "load upper immediate" instruction

lui $t0, 1010101010101010

Then must get the lower order bits right, use
ori $t0, $t0, 1010101010101010

Aside: How About Larger Constants?

16 0 8 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010 1010101010101010

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: Loading and Storing Bytes

MIPS provides special instructions to move bytes
lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

op rs rt 16 bit offset

What 8 bits get loaded and stored?
load byte places the byte from memory in the rightmost 8 bits of
the destination register

what happens to the other bits in the register?

store byte takes the byte from the rightmost 8 bits of a register
and writes it to a byte in memory

what happens to the other bits in the memory word?

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Byte Addresses

Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

The memory address of a word must be a multiple of 4
(alignment restriction)

Big Endian:
leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, SPARC, HP PA

Little Endian:
rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3
big endian byte 0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: Spilling Registers

What if the callee needs more registers? What if the
procedure is recursive?

uses a stack – a last-in-first-out queue – in memory for
passing additional values or saving (recursive) return
address(es)

One of the general registers,
$sp, is used to address the
stack (which “grows” from high
address to low address)

add data onto the stack – push
$sp = $sp – 4
data on stack at new $sp

remove data from the stack – pop
data from stack at $sp
$sp = $sp + 4

low addr

high addr

$sptop of stack

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS R3000 ISA

Instruction Categories
Computational
Load / Store
Jump and Branch
Floating Point
Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt Immediate (16bit)

jump target (26bit)

3 Instruction Formats: all 32 bits wide

R format

I format

J format
10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS procedure call instruction:
jal Procedure-Address #jump and link

Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return
Machine format (J format):

Then can do procedure return with a
jr $ra #return

Instruction format (R format):

Instructions for Accessing Procedures

op 26 bit address

op rs funct

11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: MIPS Register Convention

n.a.reserved for assembler1$at

yesreturn addr (hardware)31$ra

yesframe pointer30$fp

yesstack pointer29$sp

yesglobal pointer28$gp

notemporaries24-25$t8 - $t9

yessaved values16-23$s0 - $s7

notemporaries8-15$t0 - $t7

yesarguments4-7$a0 - $a3

noreturned values2-3$v0 - $v1

n.a.constant 0 (hardware)0$zero

Preserve
on call?

UsageRegister
Number

Name

12
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS ISA So Far

$s1 = $s2 v 6ori $s1, $s2, 613or immediate

if ($s2<6) $s1=1 else
$s1=0

slti $s1, $s2, 610set on less than
immediate

$s1 = 6 * 216lui $s1, 615load upper imm

$s1 = $s2 + 6addi $s1, $s2, 68add immediate

go to 10000; $ra=PC+4jal 25003jump and link

go to $t1jr $t10 and 8jump register

go to 10000j 25002jumpUncond.
Jump (J &
R format)

if ($s2<$s3) $s1=1 else
$s1=0

slt $s1, $s2, $s30 and 42 set on less than

if ($s1 !=$s2) go to Lbne $s1, $s2, L5br on not equal

if ($s1==$s2) go to Lbeq $s1, $s2, L 4br on equalCond. Branch
(I & R
format)

Memory($s2+25) = $s1sb $s1, 25($s2)40store byte

$s1 = Memory($s2+25)lb $s1, 25($s2)32load byte

43

35

0 and 34

0 and 32

Op Code

Memory($s2+24) = $s1sw $s1, 24($s2)store word

$s1 = Memory($s2+24)lw $s1, 24($s2)load wordData Transfer
(I format)

$s1 = $s2 - $s3sub $s1, $s2, $s3subtract

$s1 = $s2 + $s3add $s1, $s2, $s3addArithmetic
(R & I
format)

MeaningExampleInstrCategory

3

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習

アセンブラを示せ．
氏名，学籍番号，
学籍番号マーク欄(右詰で)

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

年 月 日 Arch I

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
14

演習

swap:

add $t1, $a1, $a1 #

add $t1, $t1, $t1 # $t1 = k * 4;

add $t1, $a0, $t1 # $t1 = &v[k];

lw $t0, 0($t1) # $t0 = v[k];

lw #

sw #

sw #

jr $ra # return

sll (shift left logical) $t1, $a1, 2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
15

Exercise 2

void max (int v[], int n)

{

int I;

for (i = 1; i < n; i +=1){

if (v[i-1] > v[i]) swap(v,i-1);

}

}

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
16

Exercise 3

void sort (int v[], int n)

{

int i, j;

for (i = 0; i < n; i +=1){

for (j=i-1; j>=0 && v[j]>v[j+1]; j-=1) swap(v,j);

}

}

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

データ形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

18

整数(integer)の表現

コンピュータは決まったビット幅を単位としてデータを処理．

例えば，８ビットコンピュータ は，８ビット単位で処理

ｎビットの整数表現は，２＾ｎ （2のn乗）種類の整数を表現

できる．（しか表現できない！）

８ビットであれば，２＾８ ＝ ２５６ 種類の整数．

表現できる範囲には限りがある．

効率の良い表現を利用して，資源を有効に活用する！

整数表現

符号なし表現

符号つき絶対値表現

２の補数表現

4

19

データの表現

MSB: Most Significant Bit, 最上位の桁

LSB: Least Significant Bit，最下位の桁

0 0 0 0 1 0 1 1

８ビット （１バイト） のデータ

MSB LSB

6ビット 5ビット 5ビット 5ビット 5ビット 6ビット

３２ビット （４バイト） のデータ 20

整数：符号なし表現

ある整数ｍを２進数で表現する．
1110 であれば，10112 として下位ビットを決める．

上位の残ったビットを０で埋める．

8ビットであれば，０～２５５までの２５６個の整数を表
現できる．

簡潔な表現方法．

負数を表現できない！

0 0 0 0 1 0 1 1

８ビット （１バイト） のデータ

21

0 0 1 0 1

８ビット （１バイト） のデータ

1 0 1

整数：符号つき絶対値表現 （１）

ある整数ｍを２進数で表現する．
1110 であれば，10112 として下位ビットを決める．

ただし，最上位ビットを用いて符号を表す（符号ビット）．

ｍが正ならば，符号ビットを０，負ならば１とする．

残ったビットを０で埋める．

符号無し表現の自然な拡張

8ビットであれば，- 127 ～127 までの２５５個の整数を表
現できる？

0 0 0 0 1 0 1 1

符号ビット

+1110

- 1110

22

整数：符号つき絶対値表現 （２）

8ビットであれば，- 127 ～127 までの２５５個の整
数を表現できる？

どうして２５６個の数を表現できないのか？

23

整数：符号つき絶対値表現 （２）

8ビットであれば，- 127 ～127 までの２５５個の整
数を表現できる？

どうして２５６個の数を表現できないのか？

それは，ゼロに正と負の２つがあるから！

プログラマが問題を起こす原因となる．

符号つき絶対値表現が利用されることは少ない！

+0+127

-127-0

24

整数：符号つき絶対値表現 （3）

もう一度，８ビット時の，符号つき絶対値表現を確認

128
種類

1000 00002 = -010

1000 00012 = -110

1000 00102 = -210

…

1111 11012 = -12510

1111 11102 = -12610

1111 11112 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

符号つき絶対値表現が利用されることは少ない！

5

25

整数：２の補数表現（１）

多くの計算機では２の補数 (two’s complement)
表現が利用される．

２の補数の利点

最上位ビットのみで正負判定が可能．

正負の反転が容易．

ビット幅の異なるデータへの変換が容易．

符号なし整数と同じハードウェアで加算を実装できる．

26

整数：２の補数表現（２）

その前に，１の補数 (one’s complement)
全てのビットを反転することで，マイナスを表現

128
種類

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

27

整数：２の補数表現（３）

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の１の補数表現 負の数の２の補数表現

２の補数では， ー１２８ ～ １２７ までの数を表現できる．

２の補数
（１の補数で表された数に１を加えたもの）を負の数とする．

28

整数：２の補数表現（４）

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数とする．

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の２の補数表現

29

２の補数表現では，正負の反転を簡潔に実現できる！
正数から負数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

負数から正数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

整数：２の補数表現（５）

NOT

x

-x

1

ALU, add

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数
とする．

30

整数：２の補数表現（６）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

符号拡張

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 1111 11112 = -110

1111 1111 11102 = -210

…

1111 1000 00112 = -12510

1111 1000 00102 = -12610

1111 1000 00012 = -12710

1111 1000 00002 = -12810

6

31

整数：２の補数表現（７）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

2010年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E)

３．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2010-04-22

33
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

Small constants are used often in typical code
Possible approaches?

put “typical constants” in memory and load them
create hard-wired registers (like $zero) for constants like 1
have special instructions that contain constants !

The constant is kept inside the instruction itself!
Immediate format limits values to the range +215–1 to -215

34
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Load / Store Instruction Format (I format):
lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit offset

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

35
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op rs rt 16 bit offset

How is the branch destination address specified?
36

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset
which register? Instruction Address Register (the PC)

its use is automatically implied by instruction
PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

limits the branch distance to -215 to +215-1 instructions from the
(instruction after the) branch instruction, but most branches are
local anyway

PC
Add

32

32 32
32

32

offset
16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

7

37

アナウンス

講義スライドおよびスケジュール

www.arch.cs.titech.ac.jp
講義日程が変更になることがあるので
頻繁に確認すること．

