2010-04-15

20104 Rii%#] TOKYO TECH

HEWT—FT0F 5 F—)

2. mmnix, PTRLREERRK

=

AEIZEK

kise_at_cs.titech.ac.jp
W6415#&E= AHEH13:20 — 14:50

* Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

%
aH
I

. AVEaA—SOEBLHRE FIIR. /15—
vvanr—(RBXE R). BEBP
#t. 2006
AVE2—F7—XTFHF v BEMTIO—F R
#Mikit, 2008
AVEL—EF—FTIF v,

HE ¥ & EREPH 1989
AW AT LIS,

i A, HE HE & BRE, 1988

BN—F) T,

LB 5 E, BRE. 1995

BT —%T7 57,

WA R F BRE, 1995

INA=3) ‘/{é“\ Fi—
JE3—%

sh

* SEE (T TIITERAHNIL)

‘'MIPS See

Assembly .
nguage
¥ Prolgramn'jin_g‘r'

M Dominic Sweetman

MIPSDT L TSHECHMYET. BENTT. MIPSELINUXDBIRAS O AYES . HEIS.

i =ELLVEEDRITA ?

» EAEABERTS ! >> ERUHER !

= BLLM!
= HhAOSEDEL . . .
« HHOSEVNEET D !
« FEOHDBE. . .
« REDHDEETD !
» hbhofBE. . .
= YL

2010%F RiT%:#) TOKYO TECH

* HE#MT—FTIF v F£— (BE)

2. mf, TRLREERRX

HHE - HEIZER
kise_at_cs.titech.ac.jp
W6413EE= AKEH13:20 — 14:50

aAVE1—FUN—FDz7) DHEMLEER

avEa—%
e Tty
i A%
k #i
ey R2E
“D F—H8R i

IOty Y FRBEENLHRET —FEMYMH T ANEBIET—SERIBER
[CEEAL, HAKBREREBLILT—HERAT, fIHEEL, T—2/3R,
RREE. ANKE. TLTHAEBEOHFEIEET HE5E% 5,

HE: RE—YY & ARY—, aVE1—2DOHERE 7

aAVE1—FUN—FDz7) DHEMLEER

ABTT—R BEEINT—FTIF

avEa—4
Jotyy
AR
il
efE
F—H8R A
8

Instruction Set Architecture (ISA) Type Sales

O Other

B SPARC

B Hitachi SH

B PowerPC

H Motorola 68K
| MIPS

O1A-32

@ ARM

1200

.
I+
0
(0]
o
(5]
<]
<
O 800
-
6
0
c
i=l
g

1998 1999 2000 2001 2002

PowerPoint “comic” bar chart with approximate values (see text for correct values)
9

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS R3000 Instruction Set Architecture (ISA)

= Instruction Categories Registers
= Computational
« Load / Store RO-R31
= Jump and Branch
= Floating Point
= Ccoprocessor
= Memory Management

= Special

3 Instruction Formats: all 32 bits wide

‘ OoP | rs | rt | rd | sa H funct ‘ R format
‘ OoP | rs | rt | immediate ‘ | format
‘ OP | jump target ‘ J format

10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: MIPS Register Convention

Name Register Usage Preserve

Number on call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

11

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

= MIPS assembly language arithmetic statement
add $tO0, $sl1, $s2
sub $t0, $sl1, $s2

= Each arithmetic instruction performs only one

operation
= Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination « sourcel op source2

Those operands are contained in the datapath’s
register file ($t0,$s1,$s2) — indicated by $
= Operand order is fixed (destination first)

12

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

= MIPS assembly language-atithmetic statement

operation
= Each arithmetic ingtruction fits in 32 bits and specifies
exactly three opefands

destinfation < sourcel source2

= Operand order is fixed (destination first)

= Those operands are contained in the
register file ($t0,$s1,$s2) — indicated by $

13

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

Machine Language - Add Instruction

= Instructions, like registers and words of data,
are 32 bits long

= Arithmetic Instruction Format (R format):

$t0, $s), $s2
‘ OD(‘ rs ‘ rt ‘ rd ‘ shamt ‘ funct ‘
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result's destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode
14

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

MIPS Immediate Instructions

= Small constants are used often in typical code

= Possible approaches?
= put “typical constants” in memory and load them
= create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15
= Machine format (I format):

[op [rs [nt | 16 bit immediate I format

= The constant is kept inside the instruction itself!
= Immediate format limits values to the range +215-1 to -2%5

15

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

= f=(g+h)-(i+]j)

f,g, h i, jZEFhEhLRAE $s0, $s1, $s2, $s3, $s4
IZEIYfTIT5ET 5.
EDRF—AVNEIV A ILLT=EERDMIPST T
r—ar-a—KRIEESESEH.

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

HE (BFE 48~R—D)

- f=(g+h)-(i+])

f,g, h i jZEFhEhLRE $s0, $s1, $s2, $s3, $s4
IZEIYfTIT5ET 5.
EDRF—AVNEIV IR ILLT=EERDMIPST)
r—ay-a—KRI&ESSh.

add $t0, $s1, $s2 #$t0= (g + h)
add $t1, $s3, $s4 #
sub $s0, $tO, $t1 #

17

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Memory Access Instructions

= MIPS has two basic data transfer instructions for
accessing memory

Iw $t0, 4($s3) # load word from memory
sw $t0, 8($s3) # store word to memory

= The data is loaded into (Iw) or stored from (sw) a
register in the register file

= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value
= A 16-bit field is limited to memory locations within a region of

+213 or 8,192 words (+215 or 32,768 bytes) of the address in the
base register

18

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Machine Language - Load Instruction

= Load / Store Instruction Format (I format):
Iw $t0,; 24($s2)

op_Irs | n | i6bitoffset |
Memory
24, + $s2 = OxfFfffffff
... 0001 1000 $t0|«— | 0x120040ac
+...1001 0100 0X12004004
..10101100= $s2— X
0x120040ac
0x0000000c
0x00000008
0x00000004
0x00000000
data word address (hex)

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

19

= g=h+A[8]
100ED LR AELSIAN®H D ET D, £z, AVINATIEXE
#9, h [CLP R4 $s1, $s2 ZEIYMIH5D. SHICEESID
BAIAT7RL R (& $s3 [SHIHONTNDET B.
EDRTF—I A REO IS ILE L.

20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i HE (BFE 50N—Y)

= = h+ A[S]
100FEMSRRBEFIANHDET D, Fiz, A/ (FIFE
#g, h ISLPR4E $s1, $s2 #ENYFT5. SHICERSID
B 7KL R (& $s3 ISHOON TV ET .
EDRTF—EAVRET IS ILE K.

lw $t0, 32($s3)
add $si1, $s2, $t0

$t0 = A[8]
g =nh + $t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

21

= A[12] = h + A[8]

100FEM S RBEFIAN HDET D, Fiz, A /(FIFE
#g, h ISLPOR4E $s1, $s2 #ENYFT5. SHICERFID
B 7KL R (& $s3 ISHOON TV ET .
EDRTF—EAVRET IS ILE K.

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i HE (BFES51N—D)

= A[12] = h + A[8]

100FEM S RBEFIAN HDET D, Tz, A /(FIFE
#g, h ISLPR4E $s1, $s2 #ENYFT5. SHICERFID
B 7KL R (& $s3 ISHIOON TV ET .
EDRTF—bAVRET IS ILE K.

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

23

‘ MIPS Control Flow Instructions

= MIPS conditional branch instructions:
bne $s0, $sl1l, Lbl #go to Lbl if $s0=$sl
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

= Ex: if (i==j) h=1i+ j;
bne $s0, $sl1, Lbll

add $s3, $s0, $sl
Lbl1:

= Instruction Format (I format):

‘ op ‘ rs ‘ rt ‘ 16 bit offset ‘

= How is the branch destination address specified?
24

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Specifying Branch Destinations

= Use a register (like in Iw and sw) added to the 16-bit offset
= Which register? Instruction Address Register (the PC)
= its use is automatically implied by instruction
= PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction
= limits the branch distance to -2'5 to +2%5-1 instructions from the
(instruction after the) branch instruction, but most branches are
local anyway

from the low order 16 bits of the branch instruction
6

branch dst

32 @ address
32 o 32
32 4 ' 2 EP
25

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

More Branch Instructions

= We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt
= Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0
= Instruction format (R format):
‘ op ‘ rs ‘ rt ‘ rd ‘ funct

26

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

More Branch Instructions, Con't

= Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions
= less than blt $s1, $s2, Label
slt $at, $sl, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

= less than or equal to ble $s1, $s2, Label
= greater than bgt $s1, $s2, Label
= great than orequalto bge $sl1, $s2, Label

= Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler
= Its why the assembler needs a reserved register ($at)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

27

Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:

Jj label #go to label

= Instruction Format (J Format):

‘ op ‘ 26-bit address
from the low order 26 bits of the jump instruction

28

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

HE (BFE 6an—D)

s f,0, 0,0, [FEHTHD. ThEhZE $s0 Hi $s4(<
BUFFS. SOIA—FRZIV NS IILLEFHERERE.

if(i==j) f=g+h; elsef=g—h;

29

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

HE (BFE 6an—D)

s f,0, 0,0, [FEHTHD. ThEhZE $s0 Hi $s4(<
BUFF5E. SOIA—FRZIV NS IILLEHERERE.

if(i==j) f=g+h; elsef=g—h;

bne $s3, $s4, Else # if (i'=j) goto Else
add $s0, $s1, $s2 #f=g+h
j Exit # goto Exit
Else:
sub $s0, $s1, $s2 #f=g-h
Exit:

30

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

MIPS ISA So Far

Category Instr Op Code Example Veaning
o)I/—joéﬂﬁﬁ L'C 1 75\,5 1 0035'(0)’3%“@%*&)67 Arithmetic add 0and32 | add $si,$s2, $s3 $s1 = $52 + $s3
R R&I subtract 0and34 | sub $sl,$s2, $s3 $s1= §s2 - $53
>) format) i
tYITETE £AR Arch | add immediate 8 addi $s1, $s2, 6 Ss1=$2+6
or immediate 13 ori $sl, $s2, 6 $s1 = $s2 v 6
oy = Data Transfer | load word 35 Iw $s1, 24($s2) $s1 = Memory(§s2+24)
E%’ :’Z,%%’?' . (1 format) store word 43 sw $s1, 24($52) Memory($s2+24) = $s1
FHEESI—IMERET)
load byte 32 b $s1, 25($s2) $s1 = Memory(§s2+25)
store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1
load upper imm 15 lui $s1,6 $s1.= 6 * 216
Cond. Branch | br on equal 4 beq $sl, $s2, L if ($s1==$s2) go to L
'(;rﬁ:() br on not equal 5 bne $sl, $s2, L if ($s1 1=$s2) go to L
set on less than 0 and 42 slt $s1, $s2, $s3 if ($52<$s3) $s1=1 else
$51=0
set on less than 10 slti $s1, $52, 6 if ($52<6) $s1=1 else
immediate $51=0
Uncond. jump 2 i 2500 go to 10000
ump (& [-
R format) jump register Oand8 |jr $tl go to $tl
31 jump and link 3 jal 2500 go to 10000; $ra=PC+4 32
Adapted from Computer Organization and Design, _Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design, _Patterson & Hennessy, © 2005
P .
SBEOELH, MIPS R3000 ISA RISC - Reduced Instruction Set Computer
= Instruction Categories Registers
» Computational = RISC philosophy «+——————— CISC
RO - R31 " . : mplex Instruction m r
= Load / Store = fixed instruction lengths Complex Instruction Set Compute
= Jump and Branch = load-store instruction sets
= Floating Point = limited addressing modes
= Memory Management = limited operations
= Special = Sun SPARC, HP PA-RISC, IBM PowerPC,
Compag Alpha, MIPS, ...
3 Instruction Formats: all 32 bits wide
‘ OoP | rs | rt | rd | sa H funct ‘ R format
[o [rs [vt | immediate (16bit) | 1 format
‘ OP | jump target (26bit) ‘ J format
33 34

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

AEREHE

@) ekt T—akK

AEYTRBERAEYRT L, T7AILAEYD AT L
AEY2:FIRERE, FryialRATLA
AEYSARBRIERT L (T AT—ay, R=UUT, %)
AEY4 EREETFAILATIDEE, SERETE, TERE
BYAA BIYRAH DB, BIVAHDIEE

EIYAH2: BYRAHDEO TN

ABAFIE : Frril, FerlTOATSLAER

A HFIE2: AEDEMED TN, FrRILEMEDIHEL
AHAHES: FrrILOFEE, BIEHH

LR—hEHARERERIZ &Y T
35

