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レジスタ名前換え，レジスタ・リネーミング

P8 := P3 x P5 (1)

P9 := P8 + 1 (2)

P10:= P5 + 1 (3)

P11:= P10 x P9 (4)
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P8 := P3 x P5 (1)

P9 := P8 + 1 (2)

P10:= P5 + 1 (3)

P11:= P10 x P9 (4)
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高性能プロセッサの実行モデル

多数の命令を並列処理する高性能プロセッサの実行モデル

Start End

Start End

t ステップ後

バックエンドの処理 フロントエンドの処理

バックエンドの処理 フロントエンドの処理
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Platform 2015: Intel® Processor and Platform Evolution for the Next Decade

マルチコア（２個～数10個）からメニーコアへ

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

マルチコア（２個～数10個）からメニーコアへ

デスクトップPC等に搭載される

高性能・汎用プロセッサのアーキテクチャ

は，今後，

数百個のコアを搭載する
メニーコアプロセッサの時代へ

Dual core

Quad 
core

Many-core processor
（メニーコアプロセッサ）

今後

現在
マルチコアプロセッサ

チップ

コンピュータ
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マルチコア（２個～数10個）からメニーコアへ

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

数世代の
ＲＩＳＣプロセッサのサイズ
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マルチコアプロセッサの例

Cell Broadband Engine (2005)
8 core (SPE) + 1 core (PPE)
PS3, IBM Roadrunner(12k)
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IEEE Micro, Cell Multiprocessor 
Communication Network: Built for Speed

Diagram created by IBM to promote the CBEP, ©2005 
WIKIPEDIAより

PlayStation3 の写真は
PlaySation.com (Japan) から
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Cell/B.E. Element Interconnect Bus

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

マルチコアプロセッサの例, Intel Sandy Bridge

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

メニーコアプロセッサの例, Intel SCC

Intel Single‐Chip Cloud Computer (48 Core)
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メニーコアプロセッサモデル
M-Core

メニーコアプロセッサシミュレータ
SimMc

メニーコアプロセッサモデルメニーコアプロセッサモデル
MM--CoreCore

メニーコアプロセッサシミュレータメニーコアプロセッサシミュレータ
SimMcSimMc
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M-Core: Many Core Architecture Model
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Core ID & rank

• 8ビットの整数 x, y を用いて，(x, y) の座標によりコアを指定する．x, yは
0～255 の値をとる．ただし， x = 0 及び y = 0 は特別なユニットを表現
するために予約する． y = 0 も使わない．

• Core ID は x，y の順序の連結 により生成される16ビットで表現する．
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Library: Multi-Core library MClib

• int MC_init(int *id_x, int *id_y, int *rank_x, int *rank_y);
• void MC_finalize();
• void MC_dma_put(int dst_id, void *remote_addr, void *local_addr,

size_t size, int remote_stride, int local_stride);
• void MC_dma_get(int get_id, int local_id, void *remote_addr, 

void *local_addr, size_t size, int remote_stride,       
int local_stride);

• int MC_printf(char *format, ...);
• void MC_puts(char* s);
• int MC_sprintf(char *buf, char *format, ...);
• int MC_sleep(int n);
• int MC_clock(unsigned int*);
• etc
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ネットワークアーキテクチャ

• トポロジ

– メッシュ (mesh)
• スイッチング

– Warm hole, no virtual channel
• フロー制御

– Xon / Xoff
• ルーティング

– XY Dimension Order Routing

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

2D and 3D Mesh/Torus Network

N simultaneous transfers
NB = link bandwidth * 4N       or    link bandwidth * 6N
BB = link bandwidth * 2 N1/2    or    link bandwidth * 2 N2/3

N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D 
torus) links/switch, 4N/2 links or 6N/2 links

Mesh Torus
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SimMips
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Core & Router block diagram
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Router Architecture
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Packet および Flit の構成

• フリット(flit)は 38ビットの固定長とする

address

stride

datavalid

tailerheader

payload

1 0 1 0 0 0 address

1 0 0 1 0 0 stride

1 1 0 0 0 0 header

1 0 0 0 1 0 data

1 0 0 0 1 1 data

32bit
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Packet および Flit の構成

• パケット(packet)は１つの header flit, 1～9個の address, 
stride, data flit であり，最後のフリットは tailer のフラグを立て

ることによって構成される．

• パケットは最長で10flit である．

• フリット(flit)のサイズは 38ビットの固定長とする．

Header flit
Body flit
Body flit

Body flit
Tailer flit

最長のパケット

10flit
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Library: Multi-Core library MClib

• int MC_init(int *id_x, int *id_y, int *rank_x, int *rank_y);
• void MC_finalize();
• void MC_dma_put(int dst_id, void *remote_addr, void *local_addr,

size_t size, int remote_stride, int local_stride);
• void MC_dma_get(int get_id, int local_id, void *remote_addr, 

void *local_addr, size_t size, int remote_stride,       
int local_stride);

• int MC_printf(char *format, ...);
• void MC_puts(char* s);
• int MC_sprintf(char *buf, char *format, ...);
• int MC_sleep(int n);
• int MC_clock(unsigned int*);
• etc
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DMA 転送 : MC_dma_put
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DMAC

Router
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Local 
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DMAC

Router
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Local 
Memory

• ローカルコアの保持するデータリモートコアのメモリに転送．

• 下の例は，コアAがMC_dma_putを呼び出し，コアBにデータ

を送る場合．

データ

ノード (local) ノード (remote)
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MC_dma_putの流れ – Local-Core ～ Router
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Core to Core の通信タイミング
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posedge clk

storeCore A

DMAC A - buf

Router A - buf

Router B - buf

DMAC B - buf
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header

header

Core B
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性能を重視したタイミング
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