
1

計算機アーキテクチャ特論
(Advanced Computer Architectures)

10. マルチコアプロセッサ

吉瀬 謙二 計算工学専攻
kise _at_ cs.titech.ac.jp www.arch.cs.titech.ac.jp

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Out-of-orderスーパースカラ・プロセッサ

Instruction cacheInstruction cache

Data cacheData cache

Integer

FP ALUFP ALU FP ALUFP ALU

Floating-point Memory

Reorder buffer Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

DecodeDecode

Operand FetchOperand Fetch
RenameRename

FetchFetch

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

レジスタ名前換え，レジスタ・リネーミング

P8 := P3 x P5 (1)

P9 := P8 + 1 (2)

P10:= P5 + 1 (3)

P11:= P10 x P9 (4)

(1)

(2)

(3)

(4)

P8 := P3 x P5 (1)

P9 := P8 + 1 (2)

P10:= P5 + 1 (3)

P11:= P10 x P9 (4)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

高性能プロセッサの実行モデル

多数の命令を並列処理する高性能プロセッサの実行モデル

Start End

Start End

t ステップ後

バックエンドの処理 フロントエンドの処理

バックエンドの処理 フロントエンドの処理

Processor

Processor

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade

マルチコア（２個～数10個）からメニーコアへ

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

マルチコア（２個～数10個）からメニーコアへ

デスクトップPC等に搭載される

高性能・汎用プロセッサのアーキテクチャ

は，今後，

数百個のコアを搭載する
メニーコアプロセッサの時代へ

Dual core

Quad
core

Many-core processor
（メニーコアプロセッサ）

今後

現在
マルチコアプロセッサ

チップ

コンピュータ
（ＰＣ）

6

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

マルチコア（２個～数10個）からメニーコアへ

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

数世代の
ＲＩＳＣプロセッサのサイズ

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

マルチコアプロセッサの例

Cell Broadband Engine (2005)
8 core (SPE) + 1 core (PPE)
PS3, IBM Roadrunner(12k)

8

IEEE Micro, Cell Multiprocessor
Communication Network: Built for Speed

Diagram created by IBM to promote the CBEP, ©2005
WIKIPEDIAより

PlayStation3 の写真は
PlaySation.com (Japan) から

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Cell/B.E. Element Interconnect Bus

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

マルチコアプロセッサの例, Intel Sandy Bridge

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

メニーコアプロセッサの例, Intel SCC

Intel Single‐Chip Cloud Computer (48 Core)

Kise Laboratory Tokyo Tech

メニーコアプロセッサモデル
M-Core

メニーコアプロセッサシミュレータ
SimMc

メニーコアプロセッサモデルメニーコアプロセッサモデル
MM--CoreCore

メニーコアプロセッサシミュレータメニーコアプロセッサシミュレータ
SimMcSimMc

Arch Lab. TOKYOTECH 2008Arch Lab. TOKYOTECH 2008--0707--2222

Kise Laboratory Tokyo Tech

M-Core: Many Core Architecture Model

(1, 1)

(1, 2)

(1, 8)

(2, 1)

(2, 2)

(2, 8)

(3, 1)

(3, 2)

(3, 8)

(8, 1)

(8, 2)

(8, 8)

Conv.
Core
(0, 0)

(1, 0) (2, 0) (3, 0) (8, 0)

Off chip memory modules (banks) & switch

Conventional
I/O

未実装

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ノード

DMAC

Router

Core A

Local
Memory

14

(1, 1)

(1, 2)

(1, 8)

(2, 1)

(2, 2)

(2, 8)

(3, 1)

(3, 2)

(3, 8)

(8, 1)

(8, 2)

(8, 8)

Conv.
Core
(0, 0)

ノード

Kise Laboratory Tokyo Tech 15

Core ID & rank

• 8ビットの整数 x, y を用いて，(x, y) の座標によりコアを指定する．x, yは
0～255 の値をとる．ただし， x = 0 及び y = 0 は特別なユニットを表現
するために予約する． y = 0 も使わない．

• Core ID は x，y の順序の連結 により生成される16ビットで表現する．

(1, 1)

(1, 2)

(1, 8)

(2, 1)

(2, 2)

(2, 8)

(3, 1)

(3, 2)

(3, 8)

(8, 1)

(8, 2)

(8, 8)

0 0 ID_X ID_Y

コアID

081632

Kise Laboratory Tokyo Tech

Library: Multi-Core library MClib

• int MC_init(int *id_x, int *id_y, int *rank_x, int *rank_y);
• void MC_finalize();
• void MC_dma_put(int dst_id, void *remote_addr, void *local_addr,

size_t size, int remote_stride, int local_stride);
• void MC_dma_get(int get_id, int local_id, void *remote_addr,

void *local_addr, size_t size, int remote_stride,
int local_stride);

• int MC_printf(char *format, ...);
• void MC_puts(char* s);
• int MC_sprintf(char *buf, char *format, ...);
• int MC_sleep(int n);
• int MC_clock(unsigned int*);
• etc

16

Kise Laboratory Tokyo Tech 17

ネットワークアーキテクチャ

• トポロジ

– メッシュ (mesh)
• スイッチング

– Warm hole, no virtual channel
• フロー制御

– Xon / Xoff
• ルーティング

– XY Dimension Order Routing

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

2D and 3D Mesh/Torus Network

N simultaneous transfers
NB = link bandwidth * 4N or link bandwidth * 6N
BB = link bandwidth * 2 N1/2 or link bandwidth * 2 N2/3

N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D
torus) links/switch, 4N/2 links or 6N/2 links

Mesh Torus

Kise Laboratory Tokyo Tech

SimMips

191919

Core & Router block diagram

Core

Router

inbuf

inout

inbuf

inout

inbu
f

in
bu f

in out

inbu
fin

out

XBAR
SwitchWest

Router
East
Router

South Router

North Router

in

out

DMAC

Kise Laboratory Tokyo Tech 202020

Router Architecture

Output port X+

Output port X-

Output port Y+

Output port Y-

Output port DMAC

Input port X+

Input port X-

Input port Y+

Input port Y-

Input port
DMAC

Router

XBAR
Switch

ARB
ラウンドロビン

Kise Laboratory Tokyo Tech 21

Packet および Flit の構成

• フリット(flit)は 38ビットの固定長とする

address

stride

datavalid

tailerheader

payload

1 0 1 0 0 0 address

1 0 0 1 0 0 stride

1 1 0 0 0 0 header

1 0 0 0 1 0 data

1 0 0 0 1 1 data

32bit

Kise Laboratory Tokyo Tech 22

Packet および Flit の構成

• パケット(packet)は１つの header flit, 1～9個の address,
stride, data flit であり，最後のフリットは tailer のフラグを立て

ることによって構成される．

• パケットは最長で10flit である．

• フリット(flit)のサイズは 38ビットの固定長とする．

Header flit
Body flit
Body flit

Body flit
Tailer flit

最長のパケット

10flit

Kise Laboratory Tokyo Tech

Library: Multi-Core library MClib

• int MC_init(int *id_x, int *id_y, int *rank_x, int *rank_y);
• void MC_finalize();
• void MC_dma_put(int dst_id, void *remote_addr, void *local_addr,

size_t size, int remote_stride, int local_stride);
• void MC_dma_get(int get_id, int local_id, void *remote_addr,

void *local_addr, size_t size, int remote_stride,
int local_stride);

• int MC_printf(char *format, ...);
• void MC_puts(char* s);
• int MC_sprintf(char *buf, char *format, ...);
• int MC_sleep(int n);
• int MC_clock(unsigned int*);
• etc

23 Kise Laboratory Tokyo Tech

DMA 転送 : MC_dma_put

24

DMAC

Router

Core A

Local
Memory

DMAC

Router

Core B

Local
Memory

• ローカルコアの保持するデータリモートコアのメモリに転送．

• 下の例は，コアAがMC_dma_putを呼び出し，コアBにデータ

を送る場合．

データ

ノード (local) ノード (remote)

Kise Laboratory Tokyo Tech

MC_dma_putの流れ – Local-Core ～ Router

25

DMAC

Router

Core A

Memory mapped I/O
1

フリット
パケット
を生成

3
data

2 4

remote_id
remote_addr
local_addr
size（byte）
remote_stride
local_stride
cmd

ヘッダ情報

Local Memory
addres

Kise Laboratory Tokyo Tech 26

Core to Core の通信タイミング

clk

posedge clk

storeCore A

DMAC A - buf

Router A - buf

Router B - buf

DMAC B - buf

header

header

header

Core B

header

load

性能を重視したタイミング

addr

addr

addr

addr

data

data

data

data

Kise Laboratory Tokyo Tech
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

28

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

来週（１月１３日）は TSUBAME の見学

同様に講義室に集合

説明ビデオを見て，GSICに移動

