
計算機アーキテクチャ特論
(Advanced Computer Architectures)

9. アウトオブオーダプロセッサ

ステートと例外回復

1
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

動的スケジューリング（アウトオブオーダ実行）

(1) DIV.D F0, F2, F4
(2) ADD.D F10, F0, F8
(3) SUB.D F12, F8, F14

DIV.D とADD.Dの依存がパイプラインをストールさせ，SUB.D
命令の実行を阻害

SUB.D はパイプラインのどの命令にもデータ依存しない

プログラム順序に従って命令を実行するという制約を取り除く

ことで，この制限を解消

2

Adapted from Superscalar Microprocessor Design, Mike Johnson

例外 (exception)，割込み (interrupt)

（希に）発生する好ましくないイベント

分岐予測ミス

頻度

算術演算オーバフロー／アンダーフロー

ページ・フォールト（ＨＤＤへのアクセス）

メモリ保護違反

未定義命令の使用

入出力(I/O)からのリクエスト

ブレークポイント（プログラマが設定する割込み）

…

3
Adapted from Superscalar Microprocessor Design, Mike Johnson

投機的実行 (speculative execution)

投機的実行
割込みが発生しないという仮定のもとで，命令をフェッチおよび
実行することで高い性能を得る．

回復 (recovery, repair)
誤った仮定に基づいて実行された命令の影響を取り消す処理．

再開 (restart)
回復の後に，正しい命令列を作り直す処理．

正確な割込み
割込みを発生させた命令より前の命令列は完了

割込みを発生させた命令以降を回復，再開

4

Adapted from Superscalar Microprocessor Design, Mike Johnson

古典的なプロセッサの実行モデル

１サイクルに１命令を処理する古典的なプロセッサの実行モデル

正確な割込み

割込みを発生させた命令より前の命令列は完了

割込みを発生させた命令以降を回復，再開

Start End
Processor

Start End
Processor

t ステップ後
処理すべき機械命令の列

5
Adapted from Superscalar Microprocessor Design, Mike Johnson

高性能プロセッサの実行モデル

多数の命令を並列処理する高性能プロセッサの実行モデル

Start End

Start End

t ステップ後

バックエンドの処理 フロントエンドの処理

バックエンドの処理 フロントエンドの処理

Processor

Processor

割込み
6

Adapted from Superscalar Microprocessor Design, Mike Johnson
7

MIPS R3000 Instruction Set Architecture (ISA)

Instruction Categories
Computational
Load/Store
Jump and Branch
Floating Point

coprocessor

Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

Adapted from Superscalar Microprocessor Design, Mike Johnson

効率のよい回復とステート情報

論理レジスタのみの状態（ステート）を考える．

主記憶は書き込み頻度が低いので異なる技術を利用

効率よい回復のため，少なくとも２組のステート情報が必要

計算に必要なステートの集合

例外発生時に利用するステートの集合

8

Adapted from Superscalar Microprocessor Design, Mike Johnson

イン・オーダー・ステート (in-order state)

(5, 7, 8) の命令は処理中，その他は完了している．

完了命令だけから成るもっとも長い連続命令列による最新の代入操

作によって構成される状態

R3 := (1)

R7 := (2)

R8 := (3)

R7 := (4)

R4 := (5)

R3 := (6)

R8 := (7)

R3 := (8)

R3 := (1)

R8 := (3)

R7 := (4)

イン・オーダー・ステート

命令列 9
Adapted from Superscalar Microprocessor Design, Mike Johnson

先見ステート (lookahead state)

最初の未完了命令から命令列の末尾に至るまでの代入操作のすべ

てから構成されるステート

R3 := (1)

R7 := (2)

R8 := (3)

R7 := (4)

R4 := (5)

R3 := (6)

R8 := (7)

R3 := (8)

R3 := (1)

R8 := (3)

R7 := (4)

イン・オーダー・ステート

命令列

R4 := (5)

R3 := (6)

R8 := (7)

R3 := (8)

先見ステート 10

Adapted from Superscalar Microprocessor Design, Mike Johnson

アーキテクチャ・ステート (architectural state)

現在実行中の命令列の末尾からみて各レジスタに対する最新の代入

操作から構成されるステート

R3 := (1)

R7 := (2)

R8 := (3)

R7 := (4)

R4 := (5)

R3 := (6)

R8 := (7)

R3 := (8)

R3 := (1)

R8 := (3)

R7 := (4)

イン・オーダー・
ステート

命令列

R4 := (5)

R3 := (6)

R8 := (7)

R3 := (8)

先見ステート アーキテクチャ・
ステート

R7 := (4)

R4 := (5)

R8 := (7)

R3 := (8)

11
Adapted from Superscalar Microprocessor Design, Mike Johnson

３つのステートの関係

R3 := (1)

R7 := (2)

R8 := (3)

R7 := (4)

R4 := (5)

R3 := (6)

R8 := (7)

R3 := (8)

R3 := (1)

R8 := (3)

R7 := (4)

イン・オーダー・
ステート

R4 := (5)

R3 := (6)

R8 := (7)

R3 := (8)

先見ステート

アーキテクチャ・ステート

R7 := (4)

R4 := (5)

R8 := (7)

R3 := (8)

Start End
Our-of-order processor

命令列
12

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Exercise

13

氏名，学籍番号，

学籍番号マーク欄(右詰で)

年 月 日 Advance

Adapted from Superscalar Microprocessor Design, Mike Johnson

イン・オーダー・ステート，先見ステート，アーキテクチャ・
ステートを求めよ

R3 := (1)

R7 := (2)

R8 := (3)

R7 := (4)

R4 := (5)

R3 := (6)

R2 := (7)

R2 := (8)

R7 := (9)

命令列 赤色の命令はまだ完了していない

14

Adapted from Superscalar Microprocessor Design, Mike Johnson

イン・オーダー・ステート，先見ステート，アーキテクチャ・
ステートを求めよ

R3 := (1)

R7 := (2)

R8 := (3)

R7 := (4)

R4 := (5)

R3 := (6)

R2 := (7)

R2 := (8)

R7 := (9)

命令列

R3 := (1)

R7 := (2)

R8 := (3)

R7 := (4)

R4 := (5)

R3 := (6)

R2 := (7)

R2 := (8)

R7 := (9)

R8 := (3)

R4 := (5)

R3 := (6)

R2 := (8)

R7 := (9)

イン・オーダー・
ステート

先見ステート アーキテクチャ・
ステート

15
Adapted from Superscalar Microprocessor Design, Mike Johnson

分岐予測ミスからの回復の例

R3 := (1)

R7 := (2)

R8 := (3)

R7 := (4)

R4 := (5)

R3 := (6)

Branch

R8 := (7)

R3 := (8)

予測ミスしたパス

R4 := (5) R7 := (4)

R3 := (6) R4 := (5)

R8 := (7) R8 := (7)

R3 := (8) R3 := (8)

R4 := (5) R8 := (3)

R3 := (6) R7 := (4)

R8 := (7) R4 := (5)

R3 := (8) R3 := (6)

訂正前

訂正後

先見ステート アーキテクチャ・ステート

先見ステート アーキテクチャ・ステート

16

Adapted from Superscalar Microprocessor Design, Mike Johnson

例外回復のためのバッファリング手法

チェックポイント回復 (checkpoint repair)

ヒストリ・バッファ (history buffer)

リオーダ・バッファ (reorder buffer)

フューチャ・ファイル (future file)

17
Adapted from Superscalar Microprocessor Design, Mike Johnson

バックアップ２

バックアップ１

バックアップ０

チェックポイント回復 (checkpoint repair)

分岐命令のたびにアーキテクチャ・ステートのバックアップを生成

命令が完了するたびにすべての空間を更新，バックアップのすべてのレジス

タが更新されるとインオーダ・ステートとなる．

例外が発生した場合には，バックアップの内容をコピーして再開

Start End

アーキテクチャ・
ステート

（現論理空間）

命令実行結果

バックアップ・スタック

Out-of-order processor 18

Adapted from Superscalar Microprocessor Design, Mike Johnson

バックアップ２

バックアップ１

バックアップ０

チェックポイント回復 (checkpoint repair)

短所
ステートのコピー(バックアップの作成)に長い時間を要する．

記憶量が多い．

先見能力に比例してバックアップの数が増大する．

アーキテクチャ・
ステート

（現論理空間）

命令実行結果

バックアップ・スタック

19

オペランド

Adapted from Superscalar Microprocessor Design, Mike Johnson

ヒストリ・バッファ (history buffer)

レジスタファイルにはアーキテクチャ・ステートを保存

スタックの構造を持つヒストリバッファ （先見ステートを保持）

命令がデコードされるとプッシュされる．

例外時に，例外命令までポップして回復

インオーダ・ステートに含まれる命令はバッファから削除

レジスタファイル
（アーキテクチャ・

ステート）

ヒストリ・
バッファ

命令実行結果

追い出された項目オペランド

ポップして回復

Start End

Out-of-order processor
20

Adapted from Superscalar Microprocessor Design, Mike Johnson

ヒストリ・バッファ (history buffer)

短所

レジスタファイルのポート数の増加（性能向上に寄与しない）

回復するための時間が長い．先見能力の向上に伴ってサイクル数が

増加する．

レジスタファイル
（アーキテクチャ・

ステート）

ヒストリ・
バッファ

命令実行結果

追い出された項目オペランド

ポップして回復

21
Adapted from Superscalar Microprocessor Design, Mike Johnson

リオーダ・バッファ (reorder buffer, ROB)

イン・オーダー・ステートと先見ステートを結合して，アーキテクチャ・

ステートを得る．

FIFOキュー構造をもつリオーダ・バッファ

命令がデコードされるとエンキューする．

インオーダ・ステートに含まれる命令をデキューする．

例外時には，その命令以降のエントリをリオーダ・バッファから破棄する．

命令実行結果

オペランド オペランドイン・オーダー・ステート
に追加するデータ

Start
End

Out-of-order processor

レジスタファイル
（イン・オーダー・

ステート）

リオーダ・バッファ
（先見ステート）

22

Adapted from Superscalar Microprocessor Design, Mike Johnson

リオーダ・バッファ (reorder buffer, ROB)

リオーダ・バッファには，優先度付きの連想検索の機能が必要

命令実行結果

オペランド オペランド
イン・オーダー・ステート
に追加するデータ

Start End

Out-of-order processor

レジスタファイル
（イン・オーダー・

ステート） R3 := (1)

リオーダ・バッファ
（先見ステート）

R7 := (2)
R8 := (3)
R7 := (4)
R4 := (5)
R3 := (6)
R8 := (7)

23
Adapted from Superscalar Microprocessor Design, Mike Johnson

Classical RAM (random access memory)
Organization

R
o
w

D
e
c
o
d
e
r

row
address

data bit or word

RAM Cell
Array

word (row) line

bit (data) lines

Each intersection
represents a
6-T SRAM cell or
a 1-T DRAM cell

Column Selector &
I/O Circuits

column
address

One memory row holds a block
of data, so the column address
selects the requested bit or word
from that block 24

Adapted from Superscalar Microprocessor Design, Mike Johnson

連想メモリ, CAM (content addressable memory)

Address

Address

Hit / Miss
Hit / Miss

Hit / Miss

Hit / Miss

Hit / Miss

Hit / Miss

Hit / Miss

Hit / Miss

Hit / Miss

Hit / Miss

Comparator

アドレスを入力として，連想メモリは全内容からそのアドレスと一致す

るもの検索して，対応するデータを出力する．

Data

25
Adapted from Superscalar Microprocessor Design, Mike Johnson

リオーダ・バッファ (reorder buffer, ROB)

短所

連想検索の機能が必要となる．エントリ数の増大が困難．

長所

…

命令実行結果

オペランド オペランドイン・オーダー・ステート
に追加するデータ

レジスタファイル
（イン・オーダー・

ステート）

リオーダ・バッファ
（先見ステート）

DataReg #

オペランド

論理レジスタ番号

26

Adapted from Superscalar Microprocessor Design, Mike Johnson

フューチャ・ファイル (future file)

リオーダバッファはオペランドを供給しない．

レジスタファイルと同様の構成のフューチャ・ファイルを追加する．

フューチャ・ファイルにはアーキテクチャ・ステートを保存

リオーダバッファの連想検索を排除できる．

例外の場合には，その時点までのインオーダステートを構築して，

フューチャ・ファイルの内容を無効化する．

命令実行結果

オペランド

イン・オーダー・ステート
に追加するデータ

レジスタファイル
（イン・オーダー・

ステート）

リオーダ・バッファ
（先見ステート）

フューチャ・ファイル
（アーキテクチャ・

ステート）

オペランド

命令実行結果

27
Adapted from Superscalar Microprocessor Design, Mike Johnson

例外回復のためのバッファリング方法 まとめ

チェックポイント回復

アーキテクチャ・ステートをバックアップ

ヒストリ・バッファ

ヒストリバッファに先見ステートの履歴を格納

レジスタファイルにアーキテクチャ・ステートを格納

リオーダ・バッファ

レジスタファイルにイン・オーダー・ステートを格納

リオーダ・バッファに先見ステートを格納

フューチャ・ファイル

レジスタファイルにイン・オーダー・ステートを格納

リオーダ・バッファに先見ステートを格納

フューチャ・ファイルにアーキテクチャステートを格納

28

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Out-of-orderスーパースカラ・プロセッサ

Instruction cacheInstruction cache

Data cacheData cache

Integer

FP ALUFP ALU FP ALUFP ALU

Floating-point Memory

Reorder buffer Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

DecodeDecode

Operand FetchOperand Fetch
RenameRename

FetchFetch

29
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：
命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

30

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

Instruction
Fetch

Instruction
Decode

Register
Renaming

D
is

pa
tc

hパイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

31

ディスパッチ (dispatch) : 命令ウィンドウに命令を格納する動作

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

Instruction
Fetch

Instruction
Decode

Register
Renaming

Issue

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

32

発行 (issue, fire) : 命令ウィンドウから，データ依存が解消された命

令を機能ユニットに送り出す動作

この時に，レジスタファイルの値を読み出すことがある．

Dispatch

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

Instruction
Fetch

Instruction
Decode

Register
Renaming

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

33

コミット (commit) : 命令の実行結果によってアーキテクチャ・ステー

トを更新する動作（リオーダバッファに値を書き込む）

Dispatch

Commit

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・

レジスタ
ファイル

・
スケジューラ

等

Instruction
Fetch

Instruction
Decode

Register
Renaming

Commit

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

34

リタイア (retire) : 命令の実行結果によってインオーダ・ステートを更

新する動作

割り当てた物理レジスタを回収

Dispatch

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

レポート（１）： 分岐予測の実装と評価

gshare分岐予測を実装し，その予測ミス率を測定せよ．また，
bimodal分岐予測との予測精度(20本のベンチマークのミス率の
算術平均)の比較を示せ．

ハードウェア量を 2KB, 4KB, 8KB, 16KB, 32KB, 64KBとしてグラフ
を描け．

gshare分岐予測に工夫を施し（あるいは，異なる方式の予測を
実装し），予測ミス率を測定せよ．

ハードウェア量を 2KB, 4KB, 8KB, 16KB, 32KB, 64KBとしてグラフ
を描け．

予測ミス率が低い（性能が高い）と高得点．

１月６日の講義の開始時にレポートを提出

コードの説明（コードは少ないほどベター），工夫した点

ハードウェア量の計算方法を明示

ミス率のグラフ（表ではないので注意）

考察と感想
35

詳細は１２月９日のスライド

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
36

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

