
1

計算機アーキテクチャ特論
(Advanced Computer Architectures)

７．命令フェッチと分岐予測

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スカラプロセッサ

サイクル当たりの実行命令数
Executed Instructions per Cycle (IPC)
IPCが１を超えることはできない．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スーパースカラ・プロセッサと命令レベル並列性

複数のパイプライを利用して IPC を 1以上に引き上げる

n-way スーパースカラ

ハザードの積極的な解消とストールの隠蔽が重要

n

2-way superscalar

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

データ依存関係 (data dependence)

真のデータ依存 (true data dependence)
RAW, read after write

出力依存 (output dependence)
WAW, write after write

逆依存 (antidependence)
WAR, write after read

RAR ?, read after read

偽のデータ依存

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ハードウェアによるレジスタ名前換え

論理レジスタ (logical register)
プログラマやコンパイラから見えるレジスタ

機械命令のフィールドで指定

MIPSの命令セットでは R0 – R31 という論理レジスタを利用

物理レジスタ (physical register)
プロセッサアーキテクチャから見えるレジスタ

プログラマやコンパイラから陽に見える必要はない．

物理的に存在するレジスタ

ソフトウェアによるレジスタ名前換え

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Register File

Logical Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

Physical Registers

src addr

dst addr

write data

32 bits
src

data

128
locations

32
7

7

32

write data 32

write data 32

write data 32

dst addr 7

src addr 7 src
data

32

src
data

32

src
data

32

src
data

32

src
data

32

src
data

32

src
data

32

R0 – R31

P0 – P127

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

２命令のレジスタ・リネーミング

sub $5,$1,$2
add $9,$5,$4

Cycle 1

9101112

フリータグ・バッファ

head

13

0

レジスタ・マップテーブル

1
2
3
4

5->9

->10

0
1
2
3
4
5
6
7
8
9
10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

sub p9,p1,p2
add p10,p9,p4

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I1 dst == I2 src1 ?
MUX

I1

I2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スカラ・プロセッサ，パイプラインと制約ループ

IF ID/RR EX MEM WB

10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサの命令パイプラインの例

POWER4 System Microarchitecture, IBM Journal

The Microarchitecture of the Pentium® 4, Intel Technical Report

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スカラ・プロセッサ（パイプラインの長い，スーパーパイプラ
イン），パイプラインと制約ループ

IF EX MEM WB

12

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

スーパースカラプロセッサ（パイプラインの長い，スーパー
パイプライン），パイプラインと制約ループ

IF EX MEM WB

13

IF EX MEM WB

IF EX MEM WB

IF EX MEM WB

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行のスーパースカラプロセッサ

IF EX MEM WB

14

IF EX MEM WB

IF EX MEM WB

IF EX MEM WB

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

分岐方向の予測（分岐予測）

分岐予測

分岐方向
（成立／不成立）

プログラムカウンタ

分岐履歴など
の情報

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

サンプルプログラム Vector Add

#define VSIZE 4
void vadd(long *A, long *B, long *C){

for(i=0; i<VSIZE; i++)
C[i] += (A[i] + B[i]);

}

制御フローグラフ

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False True

B1

B2

B3

i = 0

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

シンプルな分岐予測 Branch Always

Branch Always: 常に分岐が成立

すると予測する．

上の例では，予測成功率は

７５％，ミス率２５％

予測のためのメモリを必要としない．

予測とよぶほどのものではない．

B1 B2 B2 B2 B2 B3

B3 B3 B3 B2

処理すべき機械命令の列

True,
taken

i = 0

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False,
not taken

B1

B2

B3

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

Taken (1) Taken (1) Taken (1) Not Taken (0)

Taken(1),
Not Taken(0)

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

シンプルな分岐予測 ２ビットカウンタ方式

２ビットカウンタ方式
大域的な偏り，局所性の利用

２ビットカウンタの状態に応じて予測

予測のためのメモリは２ビット

状態の更新

0040d6c5 1
0040d6b8 1
0040d6bc 0
0040d6c5 0
0040d6df 0
0040d71f 0
0040d736 0
0040d7ab 0
0040d7cd 0
0040d7f9 0
0040d81e 1
0040d7f9 1
0040d81e 1
0040d7f9 0
0040d81e 0
0040d83d 0
0040d86d 1
0040d86d 1
0040d86d 1
0040d86d 1
0040d86d 1
0040d86d 1

0040d89c 1
0040d89c 1
0040d89c 1
0040d89c 1
0040d89c 1
0040d89c 1
0040d89c 0
0040d8a2 0
0040d8c0 1
0040d8c4 0
0040d8cd 1
0040d8c0 0
0040d8c4 1
0040d8cd 1
0040d8c0 1
0040d8c4 0
0040d8cd 0
0040d8e7 0
0040d923 1
0040d7ab 0
0040d7cd 0
0040d7f9 0

トレースデータ
（分岐アドレス，分岐結果）

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken

2 bit

18

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Exercise

19

氏名，学籍番号，

学籍番号マーク欄(右詰で)

年 月 日 Advance

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

２ビットカウンタ方式の機能レベルの実装

class TwoBit {
int cnt;

public:
TwoBit(int);
int predict();
void update(int);

};

TwoBit::TwoBit(){
cnt =1

}

int TwoBit::predict(){
return (cnt>=2);

}

void TwoBit::update(int taken){
if(taken!=0 && cnt<2) cnt++;
if(taken==0 && cnt>0) cnt--;

}

20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

サンプルプログラム Vector Add

#define VSIZE 4
void vadd(long *A, long *B, long *C){

for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}

制御フローグラフ

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

Taken(1),
Not Taken(0)

0 1 0 1 0 1 0 0

21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Bimodal (ISCA 1981)

Pattern History Table (PHT)
Program
Counter

…

2n entry

Predictionn

分岐アドレス（プログラムカウンタ）毎に履歴を切り替える

分岐アドレスによりパターン履歴表（ＰＨＴ）のインデックスを作成

パターン履歴表は２ビットカウンタの配列．

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

0 0 0 1
Taken(1),
Not Taken(0)

0 1 0 1 0 1 0 0
BE: 0 1 0 1 0 1 0 0
B2: 0 1 0 1 0 1 0 0

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

シンプルな分岐予測の予測精度（予測ミス率）

0

10

20

30

40

50

60

70

80

90

100

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T
-
1

IN
T
-
2

IN
T
-
3

IN
T
-
4

IN
T
-
5

M
M

-
1

M
M

-
2

M
M

-
3

M
M

-
4

M
M

-
5

S
E
R

V
-1

S
E
R

V
-2

S
E
R

V
-3

S
E
R

V
-4

S
E
R

V
-5

A
ve

ra
ge

M
is

pr
e
di

c
ti
o
n
s

R
at

e
 (

%
)

Branch Always

2bit counter

Bimodal

8KB hardware budget

Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.
23

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

分岐履歴

1110 ?
11101 ?
111011 ?
1110111 ?
11101110 ?

B2の分岐履歴

B1 B2 B2 B2 B2 B3

B3 B3 B3 B2

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

1 1 1 0

Taken(1),
Not Taken(0)

True,
taken

i = 0

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False,
not taken

B1

B2

B3

24

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

ローカル，グローバル分岐履歴

1110 ?
11101 ?
111011 ?
1110111 ?
11101110 ?

B2の分岐履歴

0000 ?
00000 ?
000000 ?
0000000 ?
00000000 ?

BEの分岐履歴

ローカル分岐履歴 ローカル分岐履歴

010101000 ?

B2とBEの分岐履歴

グローバル分岐履歴

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

0 0 0 1
Taken(1),
Not Taken(0)

0 1 0 1 0 1 0 0
BE: 0 1 0 1 0 1 0 0
B2: 0 1 0 1 0 1 0 0

25
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshare (TR-DEC 1993)

Program
Counter

XOR

n

n m

グローバル分岐履歴と分岐アドレスとの排他的論理和によりパターン履歴表

へのインデックスを作成

パターン履歴表は２ビット飽和型カウンタの配列で，選択された２ビットカウンタの
値により分岐方向を予測（bimodalと同じ）

分岐結果を用いて，予測に利用したカウンタを更新

Pattern History Table (PHT)
…

2n entry

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

010101000 （シフトレジスタ）

Branch History
Register (BHR)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshareの機能レベルの実装

typedef int data_t;

class Gshare {
data_t bhr;
data_t *buf;

public:
int size;
Gshare(int);
int predict(data_t);
void update(data_t, int);

};

Gshare::Gshare(int bpred_size){
size = bpred_size;
buf = (data_t *)calloc(size, sizeof(data_t));
for(int i=0; i<size; i++) buf[i] = 2;

}

int Gshare::predict(data_t pc){
int index = ((pc >> 2) ^ bhr) % size;
return (buf[index]>1);

}

void Gshare::update(data_t pc, int taken){
int index = ((pc >> 2) ^ bhr) % size;
if(taken!=0 && buf[index]<2) buf[index]++;
if(taken==0 && buf[index]>0) buf[index]--;
bhr = (bhr << 1) | taken;

}

27
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Gshareの機能レベルの実装

typedef int data_t;

class Gshare {
data_t bhr;
data_t *buf;

public:
int size;
Gshare(int);
int predict(data_t);
void update(data_t, int);

};

Gshare::Gshare(int bpred_size){
size = bpred_size;
buf = (data_t *)calloc(size, sizeof(data_t));
for(int i=0; i<size; i++) buf[i] = 2;

}

int Gshare::predict(data_t pc){
int index = ((pc >> 2) ^ bhr) % size;
return (buf[index]>1);

}

void Gshare::update(data_t pc, int taken){
int index = ((pc >> 2) ^ bhr) % size;
if(taken!=0 && buf[index]<2) buf[index]++;
if(taken==0 && buf[index]>0) buf[index]--;
bhr = (bhr << 1) | taken;

}

28

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

予測精度（予測ミス率）

0

5

10

15

20

25

30

35

40

F
P

-
1

F
P

-
2

F
P

-
3

F
P

-
4

F
P

-
5

IN
T
-
1

IN
T
-
2

IN
T
-
3

IN
T
-
4

IN
T
-
5

M
M

-
1

M
M

-
2

M
M

-
3

M
M

-
4

M
M

-
5

S
E
R

V
-
1

S
E
R

V
-
2

S
E
R

V
-
3

S
E
R

V
-
4

S
E
R

V
-
5

A
ve

ra
ge

M
is

p
re

di
c
ti
o
n
s

R
at

e
 (
%
)

Bimodal

Gshare

Bimode

8KB hardware budget

Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.
29

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
30

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

