
11

計算機アーキテクチャ特論
(Advanced Computer Architectures)

1．導入：マイクロプロセッサ

吉瀬 謙二 計算工学専攻
kise _at_ cs.titech.ac.jp www.arch.cs.titech.ac.jp
W831 講義室 木曜日 9:00 – 10:30

2
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

2

関連科目・履修条件等

４学期： 計算機論理設計
計算機を構成するプロセッサとその制御部に関し，具体構成と設計の原理を講義する．
特に，レジスタトランスファ言語を用いて計算機の内部動作を記述し，簡単な計算機の

設計を行う．

５学期： 計算機アーキテクチャ第一
CPU を含め，メモリ，チャネル，入出力，通信制御，等の計算機システムを構成する各

種装置について，その役割，動作原理について講義する．

６学期： 計算機アーキテクチャ第二
最新の計算機システムに採り入れられている高速プロセッサ制御方式，構成方式に
ついて述べ、これらの技術を駆使したパイプラインプロセッサ，スーパコンピュータ，超
並列計算機，データフロー計算機，等の先端的なアーキテクチャについて講義する．

計算機アーキテクチャ特論（大学院）

パソコン，ワークステーション，携帯情報機器など計算機のダウンサイジング，
パーソナル化に大きな役割を果たしているマイクロプロセッサについて，その
動向と先端技術について講義を行う．また，演習を実施することでマイクロプ
ロセッサ技術を習得する．

33

計算機アーキテクチャ特論
(Advanced Computer Architectures)

0．導入

4
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

コンピュータアーキテクチャの魅力

5
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサチップの製造，ウエーハとダイ

出典： Intel社, Industry-Leading Transistor Performance Demonstrated on Intel’s 90-nanometer Logic Process

３０ｃｍのウエーハ
厚さは数ミリで、直径が３０ｃｍ
大きなＣＤのような形をしている。

ダイ
（ウエーハから切り出した

個々のチップ）

6
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

シリコン・インゴット，ウエーハ

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサの実装，ダイのパッケージ化

ダイ

ダイのままでは外部との情報伝達ができない。情報伝達のためのピンを含む
パッケージとして加工する。

出典： Richard L. Sites, Alpha AXP Architecture Reference Manual SECOND EDITION
8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサを実装するためのトランジスタ

出典: フリー百科事典『ウィキペディア（Wikipedia）』， Intelミュージアム

プロセッサ 出荷年 トランジスタ数
4004 1971 2,250

9
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ムーアの法則によるトランジスタ数の増加

プロセッサ 出荷年 トランジスタ数
4004 1971 2,250
8008 1972 2,500
8080 1974 5,000
8086 1978 29,000
286 1982 120,000
386™ processor 1985 275,000
486™ DX processor 1989 1,180,000
Pentium® processor 1993 3,100,000
Pentium II processor 1997 7,500,000
Pentium III processor 1999 24,000,000
Pentium 4 processor 2000 42,000,000

出典： Intel社, http://www.intel.com/research/silicon/mooreslaw.htm

ムーアの法則
チップで利用できるトランジスタの数は２年間で２倍に増加する。

ムーアの法則に従ってトランジスタ数が増加してきた．今後も同様の増加が見込まれる．

10
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

トランジスタ

トランジスタは電気的なオン／オフ動作をするスイッチ

On / off

11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

トランジスタからゲート

トランジスタは電気的なオン／オフ動作をするスイッチ

幾つかのトランジスタから，少し機能の高いゲートを構成

ANDゲート
a
b

c

a b c
0 0 0
1 0 0
0 1 0
1 1 1

a b

1 c

12
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Moore’s Law

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Moore’s Law

14
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Moore’s Law

15
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

先端マイクロプロセッサ Intel Core 2 Duo

Core2 Duo (2006 7/27発表)
65nmプロセス

143mm2

291 Million トランジスタ

65W

Core Micro Architecture
Intelligent power capability
Micro-Fusion

RISC vs CISC
Advanced Smart Cache

Intel Developer Forum
16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

先端マイクロプロセッサ Cell Broadband Engine

ヘテロジニアス チップマルチプロセッサ
PowerPC Processor Element (PPE) １個
Synergistic Processor Element (SPE) ８個

Diagram created by IBM to promote the CBEP, ©2005
WIKIPEDIAより

PlayStation3 の写真は
PlaySation.com (Japan) から

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

１０億トランジスタのプロセッサ，配置，配線

18
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

１０億トランジスタのプロセッサ

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

マルチコア（２個～数10個）からメニーコアへ

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

数世代の
ＲＩＳＣプロセッサのサイズ

20
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade

マルチコア（２個～数10個）からメニーコアへ

2121

計算機アーキテクチャ特論
(Advanced Computer Architectures)

1．マイクロプロセッサの命令セットの例

22
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

22

MIPS R3000 Instruction Set Architecture (ISA)

Instruction Categories
Computational
Load/Store
Jump and Branch
Floating Point

coprocessor

Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

23

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination ← source1 op source2

Operand order is fixed (destination first)
Those operands are all contained in the datapath’s
register file ($t0,$s1,$s2) – indicated by $

24
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

24

MIPS Register Convention,
ABI (Application Binary Interface)

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

25
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

25

Instructions, like registers and words of data, are 32
bits long
Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode
26

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習

f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリ

ケーション・コードはどうなるか．

27
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習 （参考書 48ページ）

f = (g + h) – (i + j)

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリ

ケーション・コードはどうなるか．

add $t0, $s1, $s2 # $t0 = (g + h)
add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #

28
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

28

Load/Store Instruction Format (I format):
lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit offset
Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

29
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

29

MIPS Memory Access Instructions

MIPS has two basic data transfer instructions for
accessing memory
lw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

The data is loaded into (lw) or stored from (sw) a
register in the register file – a 5 bit address
The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

A 16-bit field meaning access is limited to memory locations
within a region of ±213 or 8,192 words (±215 or 32,768 bytes) of
the address in the base register
Note that the offset can be positive or negative

30
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

31
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習 （参考書 50ページ）

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $s1, $s2, $t0 # g = h + $t0

32
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習

A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

33
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

演習 （参考書 51ページ）

A[12] = h + A[8]

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0

34
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

34

MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op rs rt 16 bit offset

How is the branch destination address specified?

35
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

35

We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt

Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else
$t0 = 0

Instruction format (R format):

More Branch Instructions

op rs rt rd funct

36
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

36

More Branch Instructions, Con’t

Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions

less than blt $s1, $s2, Label

less than or equal to ble $s1, $s2, Label

greater than bgt $s1, $s2, Label

great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

Its why the assembler needs a reserved register ($at)

37
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

37

MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

Instruction Format (J Format):

op 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

38
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

38

Aside: Branching Far Away

What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

beq $s0, $s1, L1

becomes
bne $s0, $s1, L2
j L1

L2:

39
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

39

MIPS procedure call instruction:
jal ProcedureAddress #jump and link

Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return
Machine format (J format):

Then can do procedure return with a
jr $ra #return

Instruction format (R format):

Instructions for Accessing Procedures

op 26 bit address

op rs funct
40

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
40

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

Small constants are used often in typical code
Possible approaches?

put “typical constants” in memory and load them
create hard-wired registers (like $zero) for constants like 1
have special instructions that contain constants !

The constant is kept inside the instruction itself!
Immediate format limits values to the range +215–1 to -215

41
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

41

MIPS ISA So Far

Category Instr Op Code Example Meaning

Arithmetic
(R & I
format)

add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6

or immediate 13 ori $s1, $s2, 6 $s1 = $s2 v 6

Data Transfer
(I format)

load word 35 lw $s1, 24($s2) $s1 = Memory($s2+24)

store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1

load byte 32 lb $s1, 25($s2) $s1 = Memory($s2+25)

store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1

load upper imm 15 lui $s1, 6 $s1 = 6 * 216

Cond. Branch
(I & R
format)

br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L

br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) go to L

set on less than 0 and 42 slt $s1, $s2, $s3 if ($s2<$s3) $s1=1 else $s1=0

set on less than
immediate

10 slti $s1, $s2, 6 if ($s2<6) $s1=1 else $s1=0

Uncond.
Jump (J &
R format)

jump 2 j 2500 go to 10000

jump register 0 and 8 jr $t1 go to $t1

jump and link 3 jal 2500 go to 10000; $ra=PC+4 42
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

42

MIPS Register Convention,
ABI (Application Binary Interface)

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

43
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ABI Sample

int simple_add(int a,int b)

{

return a + b;

}

44
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ABI Sample

int simple_add(int a,int b)

{

return a + b;

}

simple_add:

add $v0, $a0, $a1 #

jr $ra # return

45
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

45

講義計画

導入：マイクロプロセッサ

スーパースカラプロセッサの基礎と命令レベル並列性

命令キャッシュ

分岐予測

動的命令スケジューリングと投機処理

メモリデータフローとデータキャッシュ

組込技術，低消費電力技術

チップマルチプロセッサ

オンチップネットワーク，メニーコアアーキテクチャ

【成績評価】 レポートおよび，期末レポートにより評価する．

46
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

46

教科書

コンピュータアーキテクチャ
定量的アプローチ 第4版,
翔泳社

Computer Architecture,
Fourth Edition: A
Quantitative Approach,
Fourth Edition

Publisher: Morgan
Kaufmann; 4 edition
(September 13, 2006)
ISBN-10: 0123704901
ISBN-13: 978-0123704900

47
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

47

参考書

参考書

コンピュータの構成と設計 第３版、
パターソン＆ヘネシー（成田光彰 訳）、
日経ＢＰ社、2006
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995
計算機アーキテクチャ，
橋本 昭洋 著，昭晃堂，1995

教科書
命令レベル並列処理，
安藤秀樹 コロナ社

48
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

48

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

