HERT —XTOF R
* (Advanced Computer Architectures)

1. BA:RA0FAwyvY

EHHE RS HEIFENR

kise _at_ cs.titech.ac.jp www.arch.cs.titech.ac.jp

& EERME-BEXNGF

= AFH FHEMERIEERET
« ETEBEERTST0wy Y LT ORIEERICEL, EAERERIGTORELZHET .
IS, LORIMNSVRIFEREAVTHERONEBEERRL, HELHERD

= SFH: HEWT—FTI/FE—
= CPUZEM, AEY, Fri/L, Athh, BIEFIE, FOHEMATLEERT %
REEISOVT, ZOEE, BEREBICOVTHERTS.
= 6FH: HEHRT—XTIFVE=
= BHOHEMSRTAICEYANSATOSEET Oty 5t A, BRHRIC
DSNTRRA, ChEDEHERFELI/ M TF1> T 0y, R—/5avEa—4, #
WFIEHEH, T—AON—FEH EORHNET —FTIFIIONTHEETS.
. AEBT—FTOF v iR (KERT)
VA, D—YRT—Lay, ERERERCEHEROT IUHAIIOVY,
IS—=YFIALICKELZEERLTLSY(/ATOEYHITDONT, 2D
B LIS OV THERETS. F-, BEEEHRISLTY(/0T

ws3l #EHZE AR 9:00 - 10:30 Oty Y HifiEERT 5.

1 2
AﬂEEteﬂ from L‘omﬂ‘lel Ggamzamm and . H"' Patterson & Hennessz. © 2005
HERT —XTOF R
* (Advanced Computer Architectures)
| AVE1— 8T —XFIF v DEA
0. EA

3 4

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

TOvyYFyTDENE, DT —/N\EFA

30cm®MD Y IT—/\
EIEHs) T BEEHNB0cm
KRELCDD&S5%MELTNS,

54
(DT—nhYHL=
BrDFvT)

Hi#8: Intel#t, Industry-Leading Transistor Performance Demonstrated on Intel's 90-nanometer Logic Process

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

5

)av-Ao3Tvk, IIT—/N\

Silicon Ing Water

Silicon, the most abundant element
for oxygen, is used because
ral semiconductor.

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

TOoEyYDRE F14D/Rvr—T1E

4

d < e X
FADFETRENEBEDFRIEENTELL, FRIEED-ODEVEED

TOtyYERETLH-HDINSUDRA

1971 5F: 4004 v(7O70O& 9

Jotvy
4004

HEE SO
1971 2,250

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Nylr—SELTMIY %,
tHE: Richard L. Sites, Alpha AXP Architecture Reference Manual SECOND EDITION ; i 7Y —ERRRID1F AT 17 (Wikipedia)], IntelSa—I7L4 s
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 AdEEled from Eumgu!sl Oﬂamzallﬂn and Des/gn, Patterson & Nenness* © 2005
L—T7 ORI KBS DR DIEM PO RA
-L_7®5£;“ =, Sap—4 S~
FUTTRHRATESFSL RO RIE2ERT24EIIEMT B, » MOUDRBEBRMGA Y A TBEET DRAVTF
Tt WHE NSUUREH On/ off
4004 1971 2,250
8008 1972 2,500 MOORE'S LAW
8080 1974 5,000
8086 1978 29,000
286 1982 120,000
386™ processor 1985 275,000
486™ DX processor 1989 1,180,000
Pentium® processor 1993 3,100,000
Pentium 11 processor 1997 7,500,000 —I—l_
Pentium 111 processor 1999 24,000,000
Pentium 4 processor 2000 42,000,000 s
W WS W0 RS 1600 Tes
L7 DEBIH >TSS RIHA ML TE Y. SHEAEORMARAEND. ——
Hi#8: Intel#t, http://www.intel.com/research/silicon/mooreslaw.htm
9 10
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 AdaElsd from Camﬂtel Ozamzanan and Des/zn, Patterson & Hennessx, © 2005
FOUD XA —k Moore’s Law
» FMOIUDRABERMWET Y A TEEET BRA VT
%é DOFSUUREDD, HUBEEDELNV —EHR ssrmissoies
] 7 REV)m o1 Lim sates that the trampinter domsty o etagrated
AND&—F ery twe yuars. Mocre's Law has been
a ‘H‘CI Law. increaving functionality and pertormance, and
c O O L T ——
a b | ¢ a b
0o 10 ! c
11 12

Moore’s Law

Moore’s Law

E

e
L Tt i o ol G el

13 14
AdaEled from L‘mm_:uter Olzanlzanan and Destgn‘ Patterson & Hennessz, © 2005 AdEEled from Eumgu!sl Oﬂamzal/nn and Des/zn, Patterson & Hennessx‘ © 2005
L -
§ w407 o4
4240 04w Intel Core 2 DUo Sim~< (4 a7 At yYy Cell Broadband Engine
ATFOS— w “
= Core2 Duo (2006 7/27%%) » ATAY=TR FYIR) La:jut vy
. 65nmFOER . Power?C .Processor Element (PPE) 11{&
. 143mm2 = Synergistic Processor Element (SPE) 8{&
= 291 Million b5 R4
= 65W
= Core Micro Architecture
= Intelligent power capability
= Micro-Fusion
= RISC vs CISC
= Advanced Smart Cache
PlayStation3 DEH (&
PlaySation.com (Japan) 75
Intel Developer Forum Diagram created by IBM to promote the CBEP, ©2005
15 WIKIPEDIAKY
Adaeied from Cameuler Dlganlzamm andDeslgn, Patterson & Hsnnessx, © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
2 =, . 2 =83 .
10BMSV DR TREyY, BE, B 10BNV REZD TRty Y
—_
I Iy S
17 18

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

TILFAT (2~ 10) hdA=—aF7 A~

TILFOT (2B ~#10ME) hHA=—aT A~

ingle-ISA B Multi-Core * The Potential for Processor Power Reduction, MICRO-36
L) eve || Eve || eve
RISCTOty4OY (A Many-<ore Era
Ev4| Eva- Increasing HW
EVE EVE EVE
v P:"?“t' Multi-core Era
EV6 eve || Eve || eve
HT
Figure 1. Relative sizes of the cores used in —t +
the study
19 Platform 2015: Intel® Processor and Platform Evolution for the Next Decade 20
AdaEied from Cﬂmzule/ Olzanlzaﬂan and Destgn Patterson & Hennessz‘ © 2005 AdEEled from Eamgutel Ofgan/zal/nn and DeS/Em Patterson & Henness* © 2005
MIPS R3000 Instruction Set Architecture (ISA)
= Instruction Categories Registers
= = EVS :
ﬁ‘|’%*§%7—:\'\‘7'79:‘v¢§ aff " Con;F;Utatlonal RO - R31
. = Load/Store
(Advanced Computer Architectures)
= Jump and Branch
= Floating Point
I = Coprocessor
= Memory Management
1. 4070ty d0amEtybnsl = Special
3 Instruction Formats: all 32 bits wide
[OP] rs] rt H rd] sa] funct] R format
[o [rs [vt | immediate | 1format
[OP] jump target] J format
21 22
Adaelsd from L‘ameutgl Dgamzatmn and Des/g/l Patterson & Hennessx, © 2005
MIPS Register Convention,
MIPS Arithmetic Instructions ABI (Application Binary Interface)
= MIPS assembly language-arithmetic statement Name Register Usage Preserve
add $t0, $s1, $s2 Number on call?
0 a.
sub $t0, $s1) $s2 $zero constant O (hardware) n.a
$at 1 reserved for assembler n.a.
= Each arithmetic instyuction performs only one $v0 - $v1 23 returned values no
operation $a0 - $a3 4-7 arguments yes
= Each arithmetic inétruction fits in 32 bits and specifies S0 - 817 815 | temporaries no
exactly three operands $s0 - $s7 16-23 saved vaI-LJes yes
destination <« sourcel source2 818 - $t9 24-25 |temporaries no
$gp 28 global pointer yes
= Operand order is fixed (destination first) $sp 29 stack pointer ves
= Those operands are all contained in the datapath’s $fp 30 frame pointer yes
register file ($t0,$s1,$s2) — indicated by $ $ra 31 return addr (hardware) yes
23 24

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Machine Language - Add Instruction

= Instructions, like registers and words of data, are 32
bits long

= Arithmetic Instruction Format (R format):
add $t0), $sl, $s2

‘ op ‘ Is ‘ It ‘ rd ‘ shamt ‘ funct ‘
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode
25

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

EE

= f=(g+h)-(i+])

f, 9, h i, jEFhEhLIRE $0, $s1, $s2, $53, $s4
IZEIY 5T 5.
FDORT—FAUREAVINAILLT=FERDMIPST T
r—232-a—KIEESHDM.

26

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

i BE (BB E 481—2)

= f=(g+h)-(i+i)

f,0, N0, #FRENLPRE $50, $s1, $52, $53, $s4
IZENYHTEET 5.
EDRF—FAUREQV I L LI=FERDMIPST T
=32 a—FRIEESHBH.

add $t0, $s1, $s2 #$t0=(g+h)

add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #

27

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Machine Language - Load Instruction
= Load/Store Instruction Format (I format):
Iw $t0,; 24($s2)
’700 ‘ rs ‘ rt ‘ 16 bit offset
Memory
24, + $s2 = Oxffffffff
...0001 1000 $t0 ~— 0x120040ac
+...1001 0100 $s2— 0x12004094
. 1010 1100 =
0x120040ac 0x0000000¢
0x00000008
0x00000004
0x00000000
data word address (hex) ¢
Adaetsd from L‘amgutsv Dgamzal/an and Des/gn Patterson & Hennessx, © 2005

‘ MIPS Memory Access Instructions

= MIPS has two basic data transfer instructions for
accessing memory

Iw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

= The data is loaded into (Iw) or stored from (sw) a
register in the register file — a 5 bit address

= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

= A 16-bit field meaning access is limited to memory locations
within a region of +213 or 8,192 words (+2'5 or 32,768 bytes) of
the address in the base register
= Note that the offset can be positive or negative
29

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

= g=h+A[8]
1008 S RBECHIADHDHET S, Fiz, AV IATIFE
g, h [TLYRA $s1, $52 ZENYFF5E. SHIZERFHID
BB 7 RL R(L $s3 IZHAH LN TS ET B.
EDRTF—FAVRZEOV (LB L.

30

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

i HE (35 & 5018—)

= g=h+A[8]
100EEM SR BELFIADHHET S, Fiz, AV/IAFIEE
#g, h [CLDRA $s1, $s2 ZENYFT5. SHIZEGID
BIE7RL RIL $s3 IZHiHDNTINSET S.
LDRTF—LAVREOV NS ILE L.

lw $t0, 32($s3)
add $s1, $s2, $t0

$t0 = A[8]
#g=h+ $t0

31
Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

EE

= A[12] = h + A[8]

100EM bR AEFIANHZET S, Ff=, AVIRASIFE
#o, h [TCLDRA $s1, $s2 ZEIY T3, SHICEFID
BIA 7L XI(E $s3 [SHOONTINSET 5.
EFDRTF—FAVREQ IS ILE L.

32
Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

i BE (BBE 51X—2)

« A[12] = h + A[8]

100EN LR AEINANHZET S, £z, A /(FIFE
#g, h ICLORA $s1, $s2 #ENYHF5. SHIZERFID
BA7RL R $s3 IZHIHDONTINSET S.
LDRTF—LAVREOV NS ILE L.

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0

33

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

‘ MIPS Control Flow Instructions

= MIPS conditional branch instructions:

bne $s0, $sl1, Lbl #go to Lbl if $s0=$sl
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

= Ex: if (i==j) h=1i + j;
bne $s0, $s1, Lbll

add $s3, $s0, $sl
Lbl1: .

= Instruction Format (I format):

‘ op ‘ rs ‘ rt ‘ 16 bit offset ‘

= How is the branch destination address specified?
34

Adapted from Computer Organization and Design._Patterson & Hennessy. © 2005

:.‘ More Branch Instructions

= We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt
= Set on less than instruction:
slt $t0, $s0, $sl # if $s0 < $sl then

$t0 = 1 else
$t0 = 0
= Instruction format (R format):
‘ op ‘ s ‘ rt ‘ rd ‘ ‘ funct ‘

35

Adapted from Computer Organization and Design. Patterson & Hennessy, © 2005

More Branch Instructions, Con't

= Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions
= less than blt $s1, $s2, Label
slt $at, $s1, $s2 # $at set to 1 if
bne $at, $zero, Label # $sl < $s2

= less than or equal to ble $s1, $s2, Label
= greater than bgt $s1, $s2, Label
= greatthanorequalto bge $s1, $s2, Label

= Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler
= Its why the assembler needs a reserved register ($at)

36

Adapted from Computer Organization and Design._Patterson & Hennessy. © 2005

Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

= Instruction Format (J Format):

from the low order 26 bits of the jump instruction

Adapted from Computer Organization and Design,_Patterson & Hennessy, © 2005

37

Aside: Branching Far Away

= What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue — it inserts an
unconditional jump to the branch target and inverts the

condition
beq $s0, $s1, L1
becomes
bne $s0, $s1, L2
j L1
L2:

38

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

Instructions for Accessing Procedures

= MIPS procedure call instruction:
jal ProcedureAddress

= Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return

= Machine format (J format):

#jump and link

[op] 26 bit address

= Then can do procedure return with a
#return

MIPS Immediate Instructions

= Small constants are used often in typical code

= Possible approaches?
= put “typical constants” in memory and load them
= create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !

addi $sp, $sp, 4
slti $t0, $s2, 15
= Machine format (I format):

#$sp = $sp + 4
#$t0 = 1 if $s2<15

16 bitimmediate | | format

Cop [s [t]

jr S$ra
= Instruction format (R format): = The constant is kept inside the instruction itself!
Cop [s | [[[funct] = Immediate format limits values to the range +2%5-1 to -21°
39 40
Adaeled from Cumeu[er Olganllamm and Deslgn, Patterson & Hsnnessx‘ © 2005 Adaelsd from L‘umgutsl Dgamzal/ﬂn and Des/zm Patterson & Hennessx, © 2005
MIPS ISA So Far MIPS Register Convention,
ABI (Application Binary Interface)
Category Instr Op Code Example Meaning
Arithmetic add Oand32 | add $si, $s2, $s3 $s1 = $s2 + $s3 Name Register Usage Preserve
};ia't) subtract 0and 34 |sub $si, $s2, $s3 $s1 = $s2 - $53 Number on call?
add immediate 8 addi $s1, $s2, 6 $s1=$52+6 $Zer0 0 constant O (hardware) n.a.
or immediate 13 ori $sl, $s2, 6 $s1 = $s2v 6
Data Transfer | load word 35 Iw $s1, 24(Ss2) $s1 = Memory($s2+24) $at 1 reserved for assembler n.a.
(1 format) store word 43 sw $s1, 24(352) Memory($s2+24) = $s1 $vO0 - $v1 2-3 returned values no
load byte 32 I $s1, 25($s2) $51 = Memory($s2+25) $a0 - $a3 4-7 arguments yes
store byte 40 sb $s1, 25($52) Memory($s2+25) = $s1 N
t0 - $t7 8-15 temporaries no
load upper imm 15 lui $s1,6 $s1=6* 216 $ $ P
Cond. Branch | br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L $s0 - $s7 16-23 saved values yes
;'mf‘“;) br on not equal 5 bne $s1, $52, L if (51 1=9s2) go to L $t8 - $t9 24-25 temporaries no
set on less than 0 and 42 sit $s1, $s2, $s3 if ($s2<$s3) $§%1::10else $gp 28 global pOir‘lter yes
set nnd\ess than 10 slti $s1, $s2, 6 if ($52<6) $s1gd) elge $sp 29 stack pointer yes
immediate
Uncond. jump 2 i 2500 o to 10000 $fp 30 frame pointer yes
Jum) J& [N N
R fa':max)(dump register Oand8 |jr su gotost $ra 31 return addr (hardware) yes
jump and link 3 jal 2500 go to 10000; $ra=PC+4 4 42

Adapted from Computer Organization and Design,_Patterson & Hennessy. © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

ABI Sample

int simple_add(int a, int b)
{

return a + b;

ABI Sample

int simple_add(int a, int b)
{

return a + b;

simple_add:
add $v0, $a0, $al
jr $ra

#
return

43 44
AdaEied from Cﬂmzule/ Olzanlzamm and Destgn Patterson & Hennessz‘ © 2005 AdEEled from Eamgutel Ofgan/la[mn and DeS/Em Patterson & Henness* © 2005
BEE
=
e = OVEA—87—%F70F%
s Z—S—ZNSTOEYH ORBERHLAILILFIE EEMT7TO—F F4kR,
= BRFrvia ikt
= DIETA \ = Computer Architecture,
» BMSSRT 10T LR NE Fourth Edition: A
» AEYF—EIO—ET—AFyyia Quantitative Approach,
« HARI, EHEE DRI Fourth Edition
«» FYIRILFIOEYY = Publisher: Morgan
s AVFYTRUNT—H, A=—ATT—XTIF ¥ NGB 4 EelHe
(September 13, 2006)
3 . . B, = ISBN-10: 0123704901
o [FUEETE] LR—bB KU, BIRLR—NKYEHES S
= ISBN-13: 978-0123704900
45 46
Adagied from Camzuler Olganllalmn and. Deslgn, Patterson & Hennessx, © 2005 AdaEed from Camﬂwl OEamzarron and | Des/gn, Patterson & Hennessy, © 2005
SEE TF IR
INA=) BT —
- BEE
. :yt’;—&o)ﬁﬁﬁtﬂﬁég S3IR. ==
SE—y AR —(HEXE). Em Eg . BERSAR BERTT1—)L
H#ZBP4t, 2006 & BEASAE, "g'ﬁ_‘ 7]
. aLEa—57—F70Fv, = www.arch.cs.titech.ac.jp
AfE F— &, ERFFEH, 1989
. HEMURTATH
EE HA ML AEE BRE 1988
= aVEa—4n—FHz7,
HE HA P8 E BRE 1995
. HEMT—XToF,
1B BB & BRE, 1995
= HRE
= WHLALIFGILE
RgkFH anFit
48

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Adapted from Computer Organization and Design._Patterson & Hennessy, © 2005

