
1

計算機アーキテクチャ 第二 (O)

１０．コンピュータシステム

2009年 後学期

ComSys2008 2008/11/13

SimMips: 教育・研究に有用な
Linuxが動く5000行のMIPSシステムシミュレータ

○藤枝 直輝(東工大)
渡邉 伸平(東工大)
吉瀬 謙二(東工大)

ComSys2008 2008/11/13

Agenda
開発の背景

SimMipsの概要

デモンストレーション

SimMipsの実装

評価 - シミュレーション時間 -
応用例 - メニーコアシミュレータへの組込み -
まとめ

3

ComSys2008 2008/11/13

開発の背景

コンピュータシステムの複雑化

►システムシミュレータも同様

►シンプルで扱いやすいシステムシミュレータへの要求

プロセッサの高速化

►コードをシンプルに保ちつつ現実的な速度で
シミュレーションが可能

↓

シンプルさと可読性を重視した
MIPSシステムシミュレータSimMips

4

ComSys2008 2008/11/13

SimMipsの概要

命令セット: MIPS32 R2のサブセット

►実装命令数は約100種

（浮動小数点命令を除くほぼ全て）

コード量: 4,422行(v0.5.0)
►コメント，空行を含む

主要部分(~v0.4.0)の開発期間: 約2ヶ月半

►開発は学生2名

►休日などを含む

5

744 define.h

21 main.cc

622 board.cc

297 memory.cc

227 simloader.cc

899 mips.cc

767 mipsinst.cc

309 cp0.cc

536 device.cc

4422 total

ComSys2008 2008/11/13

SimMipsのモデル(v0.5.0) 6

Chip

Sim
Loader

Mips Mips
Cp0

Memory
Controller

Int
Controller

Serial
IO

Main
Memory

Mips
Archstate

Mips
Simstate

Board

Mips
Inst

生成 参照

ｎｎ

Board
Chip

Mips

Mips
Cp0

Memory
Controll

er

Serial
IO

Main
Memory

I/O Device

ｎ
Int

Controll
er

ComSys2008 2008/11/13

SimMipsの2つのモード

Appモード (Applicationモード)
►静的リンクされたユーザプログラムを実行

►プロセッサシミュレータとしての利用

OSモード

►OSカーネルを動作させるモード

►あらかじめカーネルやRAMディスクが

ロードされた状態を想定

►システムシミュレータとしての利用

7

ComSys2008 2008/11/13

Demonstration
Appモードのデモ(2種類)
OSモードのデモ

8

ComSys2008 2008/11/13

開発の段階

1. 計算コア部分(Appモード)の実装

2. 制御コア(CP0)の機能について調査

3. CP0，割り込み，シリアル(OSモード)の実装

4. デバッグと検証

5. コードの整理，細かい機能の実装

9

2,384

3,459

3,765 3,996

ComSys2008 2008/11/13

開発の段階

1. 計算コア部分(Appモード)の実装

2. 制御コア(CP0)の機能について調査

3. CP0，割り込み，シリアル(OSモード)の実装

4. デバッグと検証

5. コードの整理，細かい機能の実装

10

2,384

3,459

3,765 3,996

ComSys2008 2008/11/13

Mipsクラス

MIPSの計算コア部分

可読性のため，ハードウェアにはないクラスを追加
►レジスタファイルなどはMipsArchstateクラス

►統計情報(命令ミックスなど)はMipsSimstateクラス

►命令情報(デコード結果など)はMipsInstクラス

11

Chip

SimLoader

Mips MipsCp0

Memory
Controller

Int
Controller SerialIO

Main
Memory

Mips
Archstate

Mips
SimState

Board

MipsInst

ComSys2008 2008/11/13

プロセッサのステージを意識した構成
int Mips::step_funct()

{

...

fetch();

decode();

regfetch();

execute();

if (inst->attr &

LOADSTORE) {

memsend();

memreceive();

}

writeback();

setnpc();

return ...;

}

12

ComSys2008 2008/11/13

フェッチ，デコード
inline void Mips::fetch()

{

...

mcid = mc->enqueue(addr, 4, NULL);

...

}

inline void Mips::decode()

{

...

inst->ir = mc->inst[mcid].data032;

inst->decode();

...

}

13

addu rd,rs,rt

0 rs rt rd 0 33
26 25 21 20 16 15 11 10 6 5 0

opcode

31

funct

void MipsInst::decode()

{

opcode = (ir >> 26) & 0x3f;

funct = ir & 0x3f;

...

switch (opcode) {

case 0:

switch (funct) {

...

case 33:

op = ADDU_____;

attr = READ_RS | READ_RT |

WRITE_RD;

break;

...

}

...

}

}

ComSys2008 2008/11/13

レジスタフェッチ，実行，ライトバック
inline void Mips::regfetch()

{

...

if (inst->attr & READ_RS)

rrs = as->r[inst->rs];

if (inst->attr & READ_RT)

rrt = as->r[inst->rt];

...

}

inline void Mips::execute()

{

switch (inst->op) {

...

case ADDU_____:

rrd = rrs + rrt;

break;

...

}

}

inline void Mips::writeback()

{

...

if (inst->attr & WRITE_RD)

as->r[inst->rd] = rrd;

...

}

14

addu rd,rs,rt

0 rs rt rd 0 33
26 25 21 20 16 15 11 10 6 5 031

r[rd] = r[rs] + r[rt];

ComSys2008 2008/11/13

開発の段階

1. 計算コア部分(Appモード)の実装

2. 制御コア(CP0)の機能について調査

3. CP0，割り込み，シリアル(OSモード)の実装

4. デバッグと検証

5. コードの整理，細かい機能の実装

15

2,384

3,459

3,765 3,996

ComSys2008 2008/11/13

Linuxの動くシミュレータにするために

制御コアCP0(Coprocessor Zero)の実装

►例外

►TLB(Translation Lookaside Buffer)
◇MIPSではソフトウェアによる制御

►アドレス変換

割り込みコントローラの実装

シリアル入出力の実装

16

ComSys2008 2008/11/13

MipsCp0クラス

例外の取り扱い

►制御レジスタに例外に関する情報を記録

►例外ハンドラ(通常0x80000180)から実行再開

TLBとアドレス変換

►TLB<->制御レジスタ間データ授受命令の実装

►仮想ページ番号(VPN)でTLBエントリを検索
◇エントリなし→TLBミス例外

◇有効ビット無→ページフォルト

17

Chip

SimLoader

Mips MipsCp0

Memory
Controller

Int
Controller SerialIO

Main
Memory

Mips
Archstate

Mips
SimState

Board

MipsInst

ComSys2008 2008/11/13

MemoryControllerクラス

ロード・ストアは必ずこのクラス経由

アドレスを見て適切なクラスへのリード・ライトを行う

18

Chip

SimLoader

Mips MipsCp0

Memory
Controller

Int
Controller SerialIO

Main
Memory

Mips
Archstate

Mips
SimState

Board

MipsInst

ComSys2008 2008/11/13

IntControllerクラス

割り込みコントローラ
►Intel 8259相当(x2)
►接続デバイス(現在はSerialIOのみ)から

割り込みを受け取り，CP0へ送る

19

Chip

SimLoader

Mips MipsCp0

Memory
Controller

Int
Controller SerialIO

Main
Memory

Mips
Archstate

Mips
SimState

Board

MipsInst

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

CP0

SerialIO

ComSys2008 2008/11/13

SerialIOクラス

シリアル接続のI/Oコントローラ

►ns 16550相当

►入力はキーボード(標準入力)から受け取り，
出力はコンソール(標準出力)へ

20

Chip

SimLoader

Mips MipsCp0

Memory
Controller

Int
Controller SerialIO

Main
Memory

Mips
Archstate

Mips
SimState

Board

MipsInst

Serial
IO

std
in

std
out

ComSys2008 2008/11/13

SimMipsのシミュレーション時間
21

※Xeon X5365(3.0GHz), gcc 4.1.2, icc 10.1
ベンチマークはクイックソートを使用

I/O Systemの利用方法と割り込み

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

22

Communication of I/O Devices and Processor

How the processor directs the I/O devices
Memory-mapped I/O

Portions of the high-order memory address space
are assigned to each I/O device
Read and writes to those memory addresses are
interpreted
as commands to the I/O devices
Load/stores to the I/O address space can only be
done by the OS

Special I/O instructions

Communication of I/O Devices and Processor

How the I/O device communicates with the
processor

Polling – the processor periodically checks the status
of an I/O device to determine its need for service

Processor is totally in control – but does all the
work
Can waste a lot of processor time due to speed
differences

Interrupt-driven I/O – the I/O device issues an
interrupts to the processor to indicate that it
needs attention

ComSys2008 2008/11/13

SimMipsを用いたメニーコア研究

マルチコア・メニーコア
→近年の高性能汎用プロセッサのトレンド

シミュレータを短期間で構築することが重要

メニーコアシミュレータSimMc※のコア部分に
SimMips(のAppモード)を使用

►SimMips側への変更は行わず

►短期に，かつネットワーク部分に注力した開発が可能に

25

※植原ほか: シンプルで効率的なメニーコアアーキテクチャの開発,
情報処理学会研究報告 2008-ARC-180 (Oct. 2008)

ComSys2008 2008/11/13

アーキテクチャモデル
26

(0, 1) (0, 2) (0, 3) (0, 8)

Off chip memory modules (banks) & switch

Conventional
I/O

(1, 1) (2, 1)

(1, 8)

(1, 2) (2, 2)

(2, 8)

(3, 1)

(3, 2)

(3, 8)

(8, 1)

(8, 2)

(8, 8)

Conv.
RISC

Module
(0, 0)

Node

ComSys2008 2008/11/13

ノードの構成
27

Core(1,1)

DMA Controller
(DMAC)

Node
memory

Processing Element
(PE)

Router
(1,1)

load/store

read/write

Node(1,1)

Memory
mapped

I/O

ComSys2008 2008/11/13

ノードの構成
28

Core(1,1)

DMA Controller
(DMAC)

Node
memory

Processing Element
(PE)

Router
(1,1)

load/store

read/write

Node(1,1)

Memory
mapped

I/O

SimMips(無変更)

ComSys2008 2008/11/13

SimMcの可視化ツール
29

チップ内ネットワークを流れるフリットの視覚化

29

(2,2) (3,3) (4,4)

(1,1)

PUT

例）

ComSys2008 2008/11/13

まとめと課題

シンプルで可読性の高いMIPSシステムシミュレータ
SimMipsを開発

►教育・研究への有用性

本日使用したバージョンは
http://www.arch.cs.titech.ac.jp/SimMips/
にて公開中

今後の課題
►機能追加：ネットワークなど…(→v1.0)
►OS等を含めた包括的な教育・研究プラットフォームの構築

30

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アプリケーションの開発フロー

MIPS
クロスコンパイラ

ELF
バイナリ

MIPSシステムシミュレータ
SimMips※メモリ

イメージ

論理合成ツール

MieruPC
Verilog コード

Configration
file

MieruPC

アプリケーション
C言語コード

液晶操作ライブラリ
itcfunc マルチレベル・ストライド値予測機構による

命令レベル並列性の向上
(JSPP 1999)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

研究の背景

真のデータ依存関係が命令レベル並列性を制限

生産者から消費者へのデータの流れを解消する技術とし

て値予測

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

研究の背景

真のデータ依存関係が命令レベル並列性を制限

生産者から消費者へのデータの流れを解消する技術とし

て値予測

Producer Consumer
Data Dependency

Producer

Consumer
Value

Predictor

Time

Misprediction
Recovery

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

関連研究：値生成のアルゴリズム

Last-value予測

最も近い過去に得られた値を予測値
ストライド値予測

最も近い過去に得られた２回の値の差分
Stride と、Last-value の和を予測値

2レベル値予測

過去のn個の履歴の中からひとつを選択
ハイブリッド値予測

複数のアルゴリズムから選択

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ストライド値予測機構

Tag Value Stride State

...

Tag Index

=

Predicted
Data Value

Instruction Address

Prediction Valid

...

+

...

Value History Table (VHT)

...

Predicted Value = Last-value + Stride

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ストライド値予測機構 （cont.）

Any stride/
Update

value and stride
Same stride/
Update value

Same stride/
Update
value

Different stride/
Update value and stride

Different stride/
Update value and stride

VHT miss/
Update value

Init
[Don’t predict]

Transient
[Don’t predict]

Steady
[Predict]

Stateフィールドの推移と予測アルゴリズム

38

Caching: A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order
2 memory address
bits to tell if the
memory block is in the
cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find
it?

Use next 2 low
order memory
address bits – the
index – to determine
which cache block

(block address) modulo (# of blocks in the cache)

Index

39

One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

20

Data

32

Hit

40

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

20

20Tag

Hit Data

32

Block offset

Four words/ block, cache size = 1K words

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

課題： SimMipsプロセッサシミュレータ

004_rand, 050_tokei を動作させ，正しく動作していることを確認
せよ．

データ値予測（last-value predictor)の予測精度を測定する仕組み
を追加し，予測精度を測定せよ．レジスタに値を書く命令が対象．

-e40m 004_rand.mex

-e40m 050_tokei.mex

データキャッシュのヒット率を測定する仕組みを追加し，ヒット率
を測定せよ．

ダイレクトマップ方式，ラインサイズは４ワードとする．

セット数を８，１６，３２，６４，１２８，２５６に変更した場合の
ヒット率を示せ．

このキャッシュのヒット率を改善する任意の方式を実装し，その効果を
示せ．

MieruPC用の面白いアプリケーションを作成せよ．その魅力を示せ．

ソースコードは各自のディレクトリに格納すること．

MieruPC用のアプリケーションとして利用させてください．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

課題： SimMipsプロセッサシミュレータ

１月２５日の講義開始時にレポートを提出

(Intel系のプロセッサとLinuxの利用を推奨）

追加したコードの主要部分の記述と説明

実行結果はただしいか？その根拠を示せ．

それぞれの課題にどれくらいの時間を必要としたか？

感想，苦労した点など．

SimMipsに対する要望など．

質問などは

kise at cs.titech.ac.jp まで

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
43

SimMips-0.5.5 の使い方など

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
44

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

講義用の計算機

131.112.16.56 (情報工学科の演習室からは入れません）

ssh archo@131.112.16.56
mkdir myname
cd myname

