
1

計算機アーキテクチャ 第二 (O)

9．アウトオブオーダ実行プロセッサ（２）

2009年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：

命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC

3
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

Index

DataTagValid

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

Tag

Hit

ラインサイズ 4ワード (16 Byte)

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの実装

struct icache_line {
data_t valid;
data_t tag;
data_t data[4];

} iline;

class Icache {
main_memory *mem;
icache_line *buf;

public:
int size;
Icache(int, main_memory*);
int fetch(data_t, data_t*);

};

Icache::Icache(int icache_size, main_memory *m){
mem = m;
size = icache_size;
buf = (icache_line *)calloc(size, sizeof(iline));

}

int Icache::fetch(data_t pc, data_t *ir){
int index = (pc >> 4) % size;
data_t tag = (pc >> 4);
if(buf[index].valid && buf[index].tag==tag){ /** hit **/

for(int i=0; i<4; i++) ir[i]=buf[index].data[i];
return 1;

}
else{ /** cache miss **/

buf[index].valid = 1;
buf[index].tag = tag;
for(int i=0; i<4; i++){

data_t ir_t;
mem->ld_4byte(pc+4*i, &ir_t);
buf[index].data[i] = ir[i] = ir_t;

}
return 0; }

}

5
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の実装

分岐成立の場合にのみ，分岐先アドレスを登録する．

Validビットは利用しない．

Tag
Index

Branch TargetTag

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

Target Address

32

Hit
6

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の実装

struct btb_line {
data_t tag;
data_t data;

};

class BTB {
btb_line *buf;

public:
int size;
BTB(int);
void fetch(data_t, data_t*);
void regist(data_t, data_t);

};

BTB::BTB(int btb_size){
size = btb_size;
buf = (btb_line *)calloc(size, sizeof(btb_line));

}

void BTB::fetch(data_t pc, data_t *target){
int index = (pc >> 2) % size;
data_t tag = (pc >> 2);
if(buf[index].tag==tag) *target=buf[index].data;
else *target = 0;

}

void BTB::regist(data_t pc, data_t target){
int index = (pc >> 2) % size;
data_t tag = (pc >> 2);
buf[index].tag = tag;
buf[index].data = target;

}

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer のミス率 (bench)

6.99

2.75

0.34 0.34 0.34
0.04

0

1

2

3

4

5

6

7

8

4 8 16 32 64 128

The number of BTB entries

B
T
B

 m
is

s
ra

ti
o
 (

%)

成立の分岐命令の場合のみ判定する点に注意

8

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC

9
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Branch Target Buffer (BTB)の改良

Tag
Index

Branch TargetTag

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

Target Address

32

Hit

キャッシュラインに１つの分岐のみを許す

Branch Location

10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュにおけるミスアラインメント

分岐命令S5の飛び先をT1とする．

- S1 S2 S3
S4 S5 - -

- T1 T2 T3
T4 - - -

分岐

ソースのキャッシュブロック１

ソースのキャッシュブロック２

ターゲットのキャッシュブロック１

ターゲットのキャッシュブロック２

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

マイク・ジョンソン，スーパースカラプロセッサ 11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令の整列化およびマージ

S1 S2 S3
S4 S5

T1 T2 T3
T4

時間
（サイクル）

分岐遅延(branch delay)

4命令デコーダの様子

S1 S2 S3 S4
S5
T1 T2 T3 T4

命令の整列化

4命令デコーダの様子

S1 S2 S3 S4
S5 T1 T2 T3
T4

命令のマージ

4命令デコーダの様子

12

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令キャッシュの改良，フィルタリング

Index

DataTagValid

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

Tag

Hit

0 0

PCが指し示す以前の命令をNOPに変更

成立分岐の後続命令をNOPに変更

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令フェッチユニットの例

命令キャッシュ，
BTB，

分岐予測など

Instruction
Fetch

パイプライン
レジスタ

Instruction cache

PC

BTB

Target address

Pipeline registers

Next PC
generator

Branch predictor

PC, BHR

Target PC

14

15

計算機アーキテクチャ 第二 (O)

アウトオブオーダ実行プロセッサのバックエンド

2009年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：

命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch
パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

17

ディスパッチ (dispatch) : 命令ウィンドウに命令を格納する動作

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

Instruction
Fetch

Instruction
Decode

Register
Renaming

Issue

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

18

発行 (issue, fire) : 命令ウィンドウから，データ依存が解消された命

令を機能ユニットに送り出す動作

この時に，レジスタファイルの値を読み出すことがある．

Dispatch

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの命令パイプライン

Instruction
Fetch Decode Rename Dispatch

Issue Register
Read Execute Commit

The Alpha 21264 Microprocessor Architecture
R. E. Kessler, E. J. McLellan, and D. A. Webb, Compaq Computer Corporation

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令発行機構： Tomasuloのアプローチ

IBM 360/91 の浮動小数点ユニットでは、アウトオブオー

ダ実行のための洗練された方式が採用されていた．

Robert Tomasulo によって発明されたこの手法では

命令が必要とするオペランドがいつ利用できるかを探知し，

RAWハザードを最少化

レジスタリネーミングを導入してWAWハザードとWARハ

ザードを回避

近年のプロセッサでは，この手法のさまざまなバリエー

ションが採用されているが，これら２つの重要な概念は共

通の特徴

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

命令発行機構： Tomasuloのアプローチ

IBM 360/91 の浮動小数点ユニットでは、アウトオブオー

ダ実行を行う洗練された方式が採用されていた。

Robert Tomasulo によって発明されたこの手法では

命令が必要とするオペランドがいつ利用できるかを探知し、

RAWハザードを最少化

レジスタリネーミングを導入してWAWハザードとWARハ

ザードを回避

近年のプロセッサでは、この手法のさまざまなバリエー

ションが採用されているが、これら２つの重要な概念は共

通の特徴

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

DIV.D F0,F2,F4

ADD.D F6,F0,F8

S.D F6,0(R1)

SUB.D F8,F10,F14

MUL.D F6,F10,F8

（２）レジスタリネーミングを導入してWAWハザードとWAR
ハザードを回避

S と T という2つの一時レジスタが利用できると仮定

DIV.D F0,F2,F4

ADD.D S,F0,F8

S.D S,0(R1)

SUB.D T,F10,F14

MUL.D F6,F10,T

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

レジスタリネーミングは発行を待つ命令のオペランドを蓄え

るリザベーションステーション（命令ウィンドウの１つの実装

方式）を用いて実現

オペランドの値をリザベーションステーションに格納することで，レジ

スタファイルを経由しないオペランドの受け渡しを実現．

保留中の命令は，それらの入力を提供するリザベーションステー

ションを指定する．

複数の同じレジスタへの書き込みが生じる場合には最後のデータ

のみをレジスタに書き込む．

命令がディスパッチされる時，保留中のオペランド用のレジスタ指

示子はリザベーションステーションの名前にリネームする．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

集中化されたレジスタファイルではなく、リザベーションステーション
を使用することによる2つの重要な利点

（１）ハザード検出および実行制御の分散化

各機能ユニットはリザベーションステーションに保持された情報によっ

て，そのユニットで命令がいつ実行を始めることができるかを決める．

（２）実行結果がレジスタを経由するオーバヘッドを隠蔽

実行結果が格納されているリザベーションステーションから機能ユニッ

トに直接渡され，レジスタを経由する必要がない．

実行結果は，共通の結果バスでバイパスされ，オペランドを待つユニッ

トすべてが同時に値をロードする．

このバスは，IBM 360/91 で共通データバス（CDB： common data
bus）と呼ばれる．

複数の実行ユニットを備えたパイプラインでは2つ以上のバスが必要

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

ロードバッファの3つの機能

計算されるまでの間，実効アドレスの要素を保持

メモリからデータが到着するのを待っている処理中のロード命令を探知

完了してCDBの利用を待っているロードの結果を保持

ストアバッファの3つの機能

計算されるまでの間，実効アドレスの要素を保持

データ値がストアされるのを待っている処理中のストア命令の書き込み

先メモリアドレスを保持

メモリユニットが利用可能になるまで格納するアドレスおよび値を保持

浮動小数点機能ユニットとロードユニットの結果はすべてCDBを経

由して，浮動小数点レジスタファイルやリザベーションステーション

やストアバッファに送られる．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

1. リザベーションステーションへの命令格納

命令キュー（正確なデータフローを保証するためにFIFO で命令を

格納している）のヘッド（先頭）から命令を取り出す．

適切なリザベーションステーションに空きがある場合は，そこに命令

を送る．

レジスタにオペランド値がある場合は，その値も同時にリザベーショ

ンステーションに送られる．

空のリザベーションステーションがない場合，構造ハザードとなり，

リザベーションステーションやバッファが解放されるまでストール．

オペランド値がレジスタにない場合は，オペランド値を生成する機能

ユニットとリザベーションステーションを検出する．

このステップがレジスタリネーミングに対応し，WARとWAWハザー

ドを除去する。

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

2. 命令実行の開始と実行（execute）

オペランドの1つ以上がまだ利用できない場合は，値が送られてくるのを待ち

ながら共通データバスを監視する．オペランドが利用可能になった時に，それ

を待つリザベーションステーションに格納する．すべてのオペランドが利用可

能になった時に，そのオペレーションは対応する機能ユニットで実行できる．

オペランドが利用可能になるまで命令の実行を遅らせることによって，RAWハ

ザードを回避する．

同じ機能ユニットを利用する複数の命令が同一のクロックサイクルにおいて

実行可能となるかもしれない点に注意する．同じクロックサイクルにおいて，

個々の機能ユニットは異なる命令の実行を開始することができるが，1つの機

能ユニットに対して2つ以上の命令が実行可能であれば，ユニットはそれらの

中から1つを選択する．

整数演算，浮動小数点演算のリザベーションステーションについては，この選

択は任意の方式で行うことができる．ロードとストアの場合には制約を考慮す

る必要がある．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

2. 実行（execute）の続き

ロードとストアは2 段階の実行過程を必要とする．第1 段階では，ベースレジ

スタが利用可能な場合に実効アドレスを計算する．また，得られた実効アドレ

スをロード・ストアバッファに格納する．
第2 段階では，メモリユニットが利用可能になるとすぐに，ロードバッファの

ロード命令を実行する．

ストアバッファのストア命令は，メモリユニットに送られる前に，ストアすべき値

を待たなければならない．ロードとストアは実効アドレス計算を通じてプログラ

ム順序を維持する．それによって、メモリを経由するハザードに対処できる．

例外の振る舞いを維持するために，命令は，プログラム順序において先行す

る分岐がすべて完了するまで実行を始めてはいけない．この制約により、実行

中に例外を引き起こす命令が実際に実行を完了するということが保証される．

分岐予測を利用するプロセッサ（動的スケジューリングのすべてのプロセッサ

がそうであるが）では，分岐に続く命令の実行を始める前に，分岐予測が正し

いことをプロセッサが知らなければならないことを意味する．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

3. 結果書き込み（Write Result）
結果が利用可能になったら，CDBに結果を流し，そこからレジス

タ、およびこの結果を待っているすべてのリザベーションステー

ション（ストアバッファを含む）に書き込む．

ストアされる値およびストアするメモリのアドレスの両方が利用可

能になるまで，ストア命令はストアバッファの中に保存され，メモ

リユニットが利用可能になるとすぐに結果が格納される．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

リザベーションステーションが保有する7つのフィールド

Op：ソースオペランドS1 およびS2 に対して行うオペレーション

Qj、Qk：対応するソースオペランド値を生成するリザベーションス

テーションの番号．値が0 の場合は，ソースオペランドがVj また

はVkとしてすでに利用可能であるか，不必要であることを示す．

Vj、Vk：ソースオペランドの値．各オペランドについては，Vフィー

ルドあるいはQフィールドのどちらかが常に有効となる．ロード命

令については，Vkフィールドはオフセットフィールドを保持するた

めに利用される．

A：ロードあるいはストア命令がメモリアドレス計算の情報を保持

するために利用する．最初に，命令の即値のフィールドがここに

格納される．アドレス計算の後には，実効アドレスが格納される．

Busy ：当該リザベーションステーション，および，対応する機能

ユニットが占有されていることを示す．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

レジスタファイルの各エントリにはQi フィールドを追加

Qi ：その実行結果をレジスタへ格納する操作を含んでいるリザ

ベーションステーションの番号．

Qi の値がブランク（すなわち0）の場合は，現在，このレジスタに

格納すべき結果を計算する命令が実行中でない．このため，この

レジスタに格納されている内容がその値となる．

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Tomasuloのアプローチ

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

動的スケジューリングの例題

最初のロードだけが完了してその結果が書き戻されている時，次の

命令列に対する状態テーブルはどのようになっているか？

1. L.D F6,32(R2)

2. L.D F2,44(R3)

3. MUL.D F0,F2,F4

4. SUB.D F8,F2,F6

5. DIV.D F10,F0,F6

6. ADD.D F6,F8,F2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

44

Mem[32 + Regs[R2]]

Mem[32 + Regs[R2]]

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

動的スケジューリングの例題

例題2.5 と同じコードセグメントを利用して，MUL.D がその結果を

書く準備ができている場合，状態テーブルがどのようになっている

かを示せ．

1. L.D F6,32(R2)

2. L.D F2,44(R3)

3. MUL.D F0,F2,F4

4. SUB.D F8,F2,F6

5. DIV.D F10,F0,F6

6. ADD.D F6,F8,F2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

アウトオブオーダ実行プロセッサの構成

命令キャッシュ，
分岐予測など

命令
ウィンドウ

・
レジスタ
ファイル

・
スケジューラ

等

命令ウィンドウ：

命令を格納するバッファ

命令フェッチ，デコード，リネーミング

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

パイプライン
レジスタ命令フェッチユニット

OoO実行コア
（データの処理）

ALU0

ALU1

ALU2

フロントエンド

バックエンド

38

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Out-of-orderスーパースカラ・プロセッサ

Instruction cacheInstruction cache

Data cacheData cache

Integer

FP ALUFP ALU FP ALUFP ALU

Floating-point Memory

Reorder buffer Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

DecodeDecode

Operand FetchOperand Fetch
RenameRename

FetchFetch

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
40

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

講義用の計算機

131.112.16.56 (情報工学科の演習室からは入れません）

ssh archo@131.112.16.56
mkdir myname
cd myname

