
1

計算機アーキテクチャ 第二 (O)

５． パイプライン処理

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

2009年 後学期

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（シングル・サイクル）

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（パイプライン処理）

(1) 0x20: add $8, $17, $18
(2) 0x24: sub $9, $20, $21
(3) 0x28: lw $10, 24($22)

Clock 1:

0x20
add

3
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ハザード (hazard)

構造ハザード (structural hazard)
オーバラップ実行する命令の組み合わせをハードウェアがサ

ポートしていない場合．

資源不足により生じる．

データ・ハザード(data hazard)
データの受け渡しの制約によって生じるハザード

制御ハザード(control hazard)
分岐命令，ジャンプ命令によって生じるハザード

命令を適切なサイクルで実行できないような状況が存在す
る．これをハザードと呼ぶ．

4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPSの基本的な５つのステップ（ステージ）

IFステージ

メモリから命令をフェッチする．

IDステージ

命令をデコードしながら，レジスタを読み出す．

EXステージ

命令操作の実行またはアドレスの生成を行う．

MEMステージ

データ・メモリ中のオペランドにアクセスする．

WBステージ

結果をレジスタに書き込む．

5
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

データハザード

6

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

フォワーディングによるデータハザードの回避

7
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサの命令パイプラインの例

POWER4 System Microarchitecture, IBM Journal

The Microarchitecture of the Pentium® 4, Intel Technical Report

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ハザード (hazard)

構造ハザード (structural hazard)
オーバラップ実行する命令の組み合わせをハードウェアがサ

ポートしていない場合．

資源不足により生じる．

データ・ハザード(data hazard)
データの受け渡しの制約によって生じるハザード

制御ハザード(control hazard)
分岐命令，ジャンプ命令によって生じるハザード

命令を適切なサイクルで実行できないような状況が存在す
る．これをハザードと呼ぶ．

9
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

単純な５段のRISCのパイプライン

プロセッサ性能はパイプライン化されていないものと比較して最大で５倍になる．

10

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

メモリポートを１つしか持たないプロセッサ

11
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

構造ハザードによるパイプラインストール

12

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（パイプライン処理）

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

ハザード (hazard)

構造ハザード (structural hazard)
オーバラップ実行する命令の組み合わせをハードウェアがサ

ポートしていない場合．

資源不足により生じる．

データ・ハザード(data hazard)
データの受け渡しの制約によって生じるハザード

制御ハザード(control hazard)
分岐命令，ジャンプ命令によって生じるハザード

命令を適切なサイクルで実行できないような状況が存在す
る．これをハザードと呼ぶ．

14

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
15

MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op rs rt 16 bit offset

How is the branch destination address specified?
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPSの基本的な５つのステップ（ステージ）

IFステージ

メモリから命令をフェッチする．

IDステージ

命令をデコードしながら，レジスタを読み出す．

分岐命令である可能性を考慮し，読み出されたレジスタ

の間で一致比較を行う．必要であれば、命令のオフセット
フィールドを符号拡張し，インクリメントされたPCに符号拡

張されたオフセットを足し合わせて分岐先のアドレスを計
算する．条件が成立した場合には分岐先アドレスをPCに
セットして，このステージで分岐命令は完了する．

16

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

プロセッサのデータパス（パイプライン処理）

17
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

静的に採用できる制御ハザードの対処 （演習）

戦略１

分岐方向が判明するまで分岐命令の後続命令を止める．

ＩＤステージで分岐命令が完了することに注意．

18

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

静的に採用できる制御ハザードの対処

戦略１

分岐方向が判明するまで分岐命令の後続命令を止める．

ＩＤステージで分岐命令が完了することに注意．

分岐命令の出現毎に１サイクルのストールが発生する．

19
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略２： predicted-not-taken方式 (Exercise)

すべての分岐命令を not taken （不成立）として処理を

進める．

20

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Exercise

氏名，学籍番号，
学籍番号マーク欄(右詰で)

21
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略２： predicted-not-taken方式

すべての分岐命令を not taken （不成立）として処理を

進める．

分岐結果が不成立であれば，ペナルティは生じない．

分岐結果が成立であれば，１サイクルのペナルティ

22

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略３： predicted-taken方式

すべての分岐命令を taken （成立）として処理を進める．

ＩＤステージが終了して，分岐と判定するとすぐに分岐成

立として処理を継続．

今考えているパイプライン構成では，この方式の利点は

ない．

23
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

分岐命令の後続の幾つかの命令を実行した後に，

分岐する．

１サイクルの遅延を持つ命令実行順は次の通り．

分岐命令を実行

分岐命令の次アドレスの命令を実行

分岐成立では，飛び先アドレスの命令を実行（不成立では，分岐

命令の次の次のアドレスの命令を実行）

24

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

分岐命令の後続の幾つかの命令を実行した後に，分岐

する．

25
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

戦略４： 遅延分岐 (delayed branch)

分岐命令の後続の幾つかの命令を実行した後に，分岐

する．分岐命令によるストールは生じない．

初期のRISCプロセッサにて利用された．

26

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

遅延分岐スロットのスケジューリング

Nop命令

27
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインの実行の困難さ

例外への対処

I/O デバイスからの要求

ユーザプログラムからのOSサービスの呼び出し

命令実行のトレース生成

ブレークポイント（プログラマの要求による割り込み）

整数演算命令のオーバーフロー

FP 演算命令の不規則さ

ページフォールト（メインメモリ内に無い場合）

整列されていないメモリアクセス（整列が必要な場合）

メモリ保護違反

未定義あるいは未実装命令の使用

ハードウェア異常故障

電源異常

命令セットの複雑さ

複数サイクル処理の扱い
28

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインの実行の困難さ：例外への対処

29
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

パイプラインの実行の困難さ：例外への対処

1. 次の命令フェッチ時に，トラップ命令をパイプラインに挿入

2. トラップが実行されるまで，フォールトした命令とパイプライン中

でそれに後続している命令による書き込みをすべて取りやめる．

例外を生じた命令から始まるすべてのパイプライン中の命令に

対して，パイプラインラッチにゼロを書き込むことで実現する．

その命令より前の命令には施してはならない．この操作により，

例外が対処されるまでの未完了の命令の状態を適切に設定す

る．

3. OSの例外ハンドラのルーチンが制御を獲得したあとで，その

ルーチンはフォールトした命令のPCを直ちに保存する．この値は，

後ほど例外から戻る時に使用．

30

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
31

アナウンス

講義スライド，講義スケジュール

www.arch.cs.titech.ac.jp

講義用の計算機

131.112.16.56 (情報工学科の演習室からは入れません）

ssh archo@131.112.16.56
mkdir myname
cd myname

32

計算機アーキテクチャ 第二 (O)

コンピュータの性能

大学院情報理工学研究科 計算工学専攻

吉瀬謙二 kise _at_ cs.titech.ac.jp
S321講義室 月曜日 ５，６時限 １３：２０－１４：５０

33

計算機アーキテクチャへの要求

速度（実行時間），スループット

消費電力

発熱

音

価格

安定性，など

34

Which is faster?

• Time to run the task (ExTime)
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns …
(Performance)

– Throughput, bandwidth

Plane

Boeing 747

BAD/Sud
Concorde

Speed

610 mph

1350 mph

DC to
Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

From the lecture slide of David E CullerMPH (Mile Per Hour)

35

Defining (Speed) Performance

Normally interested in reducing
Response time (execution time) – the time between the start and
the completion of a task

Important to individual users

Thus, to maximize performance, need to minimize execution time

Throughput – the total amount of work done in a given time
Important to data center managers

Decreasing response time almost always improves throughput

performanceX = 1 / execution_timeX

If X is n times faster than Y, then

performanceX execution_timeY-------------------- = --------------------- = n
performanceY execution_timeX

36

Performance Factors

Want to distinguish elapsed time and the time spent on our task
CPU execution time (CPU time) – time the CPU spends working on a task

Does not include time waiting for I/O or running other programs

CPU execution time # CPU clock cycles
for a program for a program

= x clock cycle time

CPU execution time # CPU clock cycles for a program
for a program clock rate

= ---

Can improve performance by reducing either the length of the clock
cycle or the number of clock cycles required for a program

or

37

Review: Machine Clock Rate

Clock rate (MHz, GHz) is inverse of clock cycle time
(clock period)

Clock rate = 1 / Clock period

one clock period

10 nsec clock cycle => 100 MHz clock rate

5 nsec clock cycle => 200 MHz clock rate

2 nsec clock cycle => 500 MHz clock rate

1 nsec clock cycle => 1 GHz clock rate

500 psec clock cycle => 2 GHz clock rate

250 psec clock cycle => 4 GHz clock rate

200 psec clock cycle => 5 GHz clock rate 38

MIPS (Million Instructions Per Second)

１秒当たりに実行された命令の数（単位はMillion）
原始MIPS (native MIPS)

注意
プロセッサアーキテクチャのMIPSとは関係ない

MIPSの問題点とは？

命令セットに強く依存する尺度

異なる命令セット，NOP，コンパイラ，性能？

39

MFLOPS, GFLOPS

MFLOPS (Million Floating-point Operations Per
Second)

GFLOPS (Giga Floating-point Operations Per
Second)

MIPSとGFLOPSとの相違は？

命令セット，浮動小数点演算

40

先端マイクロプロセッサ Cell Broadband Engine

ヘテロジニアス チップマルチプロセッサ
PowerPC Processor Element (PPE) １個
Synergistic Processor Element (SPE) ８個

Diagram created by IBM to promote the CBEP, ©2005
WIKIPEDIAより

PlayStation3 の写真は
PlaySation.com (Japan) から

Cell/B.E. Element Interconnect Bus

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed 42

Cell Broadband Engine

ピーク性能
１サイクルで積和演算を１回実行できる演算器
(2 FLOP/cycle)
SIMD構成で，ＳＰＥあたりの並列性 ４

チップ内のＳＰＥの数 ８

動作周波数 ４ＧＨｚ

２ × ４ × ８ × ４ ＝ ２５６ ＧＦＬＯＰＳ

積和演算 × SIMD化 × マルチコア × 動作周波数

ペンティアムは ８ＧＦＬＯＰＳ 程度

性能を引き出す鍵は
DMA転送とローカルストアの使い方，SIMD化，並列化 ．．．

