2009-04-16 20094 Fi524 TOKYO TECH

W HERTETIT B 6

1. PR T LOERER B ERE

TH R IREIFEX
kise@cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

1

i Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

:_L BER BB

4%331 u-l'g*g%

. ﬁ%ﬁ#ﬁkﬁﬁﬁk@“%ﬂ"nt/ﬁ&%wﬁﬁuﬁﬂﬁmzﬁab, BB EETORE
EETD BIC, LYRENSVRIFEBREAVCHERONRB %
FaRL, BEGEEROEEETS.

« 5FH: HERT —FTIOFVE—

= CPUZEH, AEY, FrRr/L, A7, BIEHMH FOHEHRATLE

BRI EBEBICOVT, TO&RE, BIERBISOVWTHERT 5.

w 6FH: HHEET—FTIOFYEZ
» BFOHE#MRATLAICRYANLONTWSEETAEyHHIHAR, #
BARIZDOVWTHRR, ShSDEMERELIz/ A 1TS1>TntyYy,
A—/aVEa—4, BHFIFEME T—270—5ER FOLMmNAG
T—XTFIFvIZDONTHEET .

. HEBT—FTIFERRER)

20094 A% #4 TOKYO TECH

* STERT—FTIF v F— (F)

STEB AT LOERER

SER(TRIOMTaVEL—S)

AEY
‘ DRAM (dynamic random access memory)

* Ik —4HHh—K

10

11

—F

-~

A

<Y

e

12

B

13

14

i AEHT—FTOFrElE?

Architecture

= A ERT—FTIF v
Computer Architecture

15

T—XTOFv(EFE)

i Architecture

ERAZFADIIEDETIVR
1E#92.5tD T 0y % 230~2507 &
BABERTELN TS,

BEIFHERT —FTIF Yy DR—LR—IH5 http://www.cs.wisc.edu/arch/www/ 1

HEMT £ 7T

Computer Architecture

WWW Gomputer Architecture Page

Mbrtind, Doisg Burgsrt, ard Mark Hil

Dasigred by kin X Wik

o A

17

SHEMT—XT 0T

What's Computer Architecture?

Computer Architecture is the science and art
of selecting and interconnecting hardware
components to create computers that meet
functional, performance and cost goals.
Computer architecture is not about using
computers to design buildings.

HERT—XTIF v DER—LR—UHB http://www.cs.wisc.edu/arch/www/
18

19

HEEMT—FTOF v, JAvIH

S3095G3NR

10

Intel 845GM

. LOGK BUFFER I
533 | SOTMHI
DOR2 DIMM

S HTEN
[Toorz oimm |

- —

POIE 4x SLOT sl e

usH PONT & 1
USB PiN HEADER

Intel 82573 _PCIE LANE & i
Ciga-bit LAN © ICHTR-M
|mtsi 82573 BEIE LANE &
Giga-bit LAN € -

acor

e]

. | 40 711 D COMNECTOR | oy [50 P ConaPacT Fast

e

FAN CONTROL } { wsaseias |

[PaRALLEL PORT cONNECTOR

| sERiaL PORT CONNECTOR

KB/MS CONNECTOR
FLOPPY CONNECTOR

HARDWARE MONITOR

SEET—FTIOFr~ADER

-
- HEE

Eo

. AANY

xr
L=

= flifE
= REME, M

22

11

EmEHETA57ay DI RILE—HE

COFEETIE, 7oy OB#EIZRE, O vbOES O, XIBEOXRED
IRILF—HEBEISEDLTLK.

Power Density
(Wicm2)

Pentium®
processors

8 Gelsinger’s Slide from 1SSCC 2001 23

ANBITESTEELGHE TV FrLoy

HEOTZOABHIHHLEBMET, Srand Challenge problems
REOIAVE1—FTHHENEYLREE | Siran genome
Fluid turbulence
Vehicle dynamics

178 - ;
: - N Ocean circulation
HEOSERE/ VY Viscous fluid dynamics
Superconductor modeling

100 GB — | Quantum chromo dynamics
o Vision
2 | N P53 S N S S
é 10GB Structural
ET Wehicle biology
& sigriggyre Pharmaceutical design
=2 1GB
g A 72-hour
= weather

100 MB — A48-hour 3D plasma

weather modeling Chemical dynamics
2D Qil reservair
10 MB :
M airfoil modeling
| I | ! 1 1 |
100 MFLOPS 1 GFLOPS 10 GFLOPS 100 GFLOPS 1 TFLORS

Computational performance requirement

Hi#8: David E. Culler, Jaswinder Pal Singh, Parallel Computer Architecture (p.7) 24

R—N\—aVE1—3DE I AT

I SRSEEEEAS PR R 5 —
Tokyo Institute of Tecl ogy
Global Scientific Information and Computing Center

. A HOME Al Ly —lconT A ERER
Titech -
TSUBAME

~80+ racks
350m2 floor area
1.2 MW (peak)

47.3QITFL5PS || T

25

Fim<T (407 70ty Intel Core 2 Duo

= (2006%7RA %K)
= 65NMTAER
= 143mm?2
s 291IM FSUTURA
= 65W
= Core Micro Architecture
= Intelligent power capability
= Micro-Fusion
= RISC vs CISC
= Advanced Smart Cache

Intel Developer Forum

26

13

SLim< (4070t vy Intel Montecito

2{EDEPICT O Y YT
1MB L2, 12MB L2%+vy
a

EPICO7 (11 issue, 2way
Temporal MT
MDIEBF VRS

« 1.72BTrs

= 21.5mm x 27.7mm

= 90nm

« 100W

NI—HIHRAOERFYT

F oxton E%ﬁ Source: ISSCC 2005 papers

27

Fim< /AT Aty
Cell Broadband Engine

s ATOVZFR FYITTIILFIOEYY
= PowerPC Processor Element (PPE) 11&
= Synergistic Processor Element (SPE) 81{&

Diagram created by I1BM to promote the CBEP, ©2005
WIKIPEDIAKY

28

14

i 4eig<7 (-0 04y SUN Rock

s A Third-Generation 65nm 16-Core 32-Thread Plus 32-
Scout-Thread CMT SPARC® Processor

Cored : Corel
Core Guuster 0

Icache [acl

Corez | Cored
|

' Y System 10
Memary Channals Charnal
Figure 4.1.1: Top level logical block diagram. Figure 4.1.3: Chip micrograph

Source: 1SSCC 2008 papers 29

20094 A% #4 TOKYO TECH

AEET—FTOF v %E— (E)

SR RT LOEERE

30

15

AVEA—R(UN—FD7) DHHEMNLGESR

avEa—4
Jotyy
AR
i) £
LIE
FT—RINR Hh

oty RRBEENMGRET —4ERYL T ANEERT— SEREEE
IEEAD HAREFRBEENST —FERALT GIHEEX, T—5/3R,
REEE. ANKE. TLTHARENHELZIEE T HIETEES,

B E—UY & ARY—, AVEI—SOWMERE 31

i =SKEF nnh\b/_l‘ DI 7 DEEAN

swap (int v[], int k) 01 2 ... l

int temp;
temp = v[k]; swapl

vik] = v[k+1];

{ JRNRNRE REAE

|

v[k+1] = temp; HIIIIE.III

} T4

CEBTCRmLI-TAY 3L

32

16

i =SKEF LYY \—KOTI7DE B

swap - $2
muli $2, $5,4 01 2 ... l
i 42 082 v Tl
lw $15, 0($2) 516
lw $16, 4(§2) swap
sw $16, 0($2) $15
sw $15, 4(52) HRREN [[
jr $31 $4 +0 $5
$4+4

MIPSD 7t JYEEICEREINI=TAI S L

33

i EKEEENSN—FKIHITTFDEEA

swap (int v[],

{

}

int temp;

int k)

temp = v[k];

v[k] = v[k+1]1;
v[lk+1] = temp;

CEETR

wLE=7FAgS5 A

7

BHEEIELSNET OIS L RA R O EEY)

swap:

muli $2, $5,4
add $2, $4,92

Iw
Iw
sw
sw
ir

$15, 0($2)
$16, 4
$16, 0
$15, 4
$31

MIPSD7+>J)EEEIC
FiIh-7055 4

34

17

& FOySL, T—4, FDOit

ol
(AEY)

J0455 L

~I|L
=

N

— | Fetvy

REAYY

/

35

i AVEA—A(N\—FY17) DHHEMEESR

ARITI—R

‘ =AY 6 ’
avEa—4

Jotwyy

AAD

] 7
ioiE
F—HINR HA
36

18

EEIAE

HEBOXTLOERERLEERE

TR, ek, TFLREBEERRK
FAEJ1:FEEAERYSRAT L, T7AIAEYD AT L

A2 BERE, FrvialATLA

AR AREREBIRT LA(BT AV T—ay, R=DUY, &)
AEY4 EREBEETFAILAE)DER, TERERE, LIERE
BYAH BV AHDRBHEN, BIV:AHDIESE
BYiAH2: BV AHLED TN

AHAEET:FrRIL, FrrILTATSLAR

A AFE2: AR ABEDOTRN, FrRILBIEDIERIE

A HEIES : FrRILOIELE, BIEFHIE

LAR—hEHIRAERICKYEHE., SEEITLLHEEIE

37

b

i SEE
ﬂ.’i‘-—}/&'\;r /——-

. OVEA—SOWBLRE B, [e /1)
JRE—Y & AR — (B S8
). HIEBP#t. 2006 Emtpﬂ-f

AVEL—ET7—FTUOF ¥ EEMTTO—F F4iR
Miktt, 2008

aAVE2A—3T7—FTIFv,

HE E— F, ERES, 1989
E’rﬁﬁébh—mli

EMR EA WL Mg £ BREE, 1988
:/tl—gn—bbl

EM EA DB % E BRE 1995

?r%%k? FTFOFv,

BA MEiE &, BRE, 1995

38

$ TEE

= AVEL—SDERERET FE3IR.

° ~ > > s £5 = adi
ISB— 2 AR — (L HH 8 0
iR). B#EBP%t. 2006 =fs
I —HF—%FHF v ERNTIO—F BUR ——s
$ik4t, 2008 — S
AVE1—ET—FFIFv, e A
R ¥— F ERRFE, 1989 g Ly
SHEMRTLIE, Sk * £
EE KA, AL A% E BRE 1988 0 sl
a1 —BN—RY T, £
EH EA hE i E BRE 1995 r e

HIEET—F 7%,
1 B E, BRE, 1995

39

i Lit—h P

1. BBEEHAEHLETEHER(\VIV)ZEMELTL.
BUEEADEBRTHELLG) BREBRFREL
K.

REBBTEHALIET HLEHBAE L.

F1z, BEOFHEZER OGRS K.

1. FEIXSHAURALETS.
TNETNDOERDMEEEWebIZTHRAET S L.

2. ARL—F4VT VAT LELT Linux BAENMET BT E.
FRABMETDEEZBHIEICTHIL.

3. HAEHAAKDAHLETD. TARTLAPF—R—FIEFE.

4. LIR—KEZALRHE 2B URNICEEDH B L.

40

20

:_L L iR

» 4A278 (FE11B) ETICEFA—/LTIRE
» AKYBEICIRHLTWS (kBN LB A
» FIIFELIEBAONGHESERTONILEER
= report_at_arch.cs.titech.ac.jp (_at # @ ICEEH#23)

s BFA—ILDAALIL
= ArchReport [FEEE]
s BFA—ILORAE
» KA, FEES
« [EZE
« TXRMER, HBUEPDFI7AILE R
« AAFRET2MLIAICEED S E.

41

2009-04-30 20094 #5243 TOKYO TECH

* SEET—FTIF v £— (E)

AXXY

2. mo

X, PRLRTEERK

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

21

E1E LR—FDREIKS

10.0

9.0

8.0

7.0

6.0

5.0

SCORE

40

3.0

20

10 | I
0.0 LLLM. L1, 1, ., 0, 1., L., .0, 1., 1.0, .10, 1, .0, .0, ., , 1.0, . 0, .0, £.0, R, B0 ELL I,

R I T - R BT R T e BT S - S ST, S - S ST, S S - STy B
————— NN NNN®® OO O T b W0,
DATE 43

\

ZEE FHEATZELY)

n“ﬁ-—_;?‘/ég'\:f g
» OVEa1—SOEMERE B3R, /5 — j“t 1_903
oA —(BHBXE R). BEBP
#t. 2006
» AVELI—AT—FTOFvY ERNTTO—F 4R
#Miktt, 2008
s OVEL—AT—XTUFv,
M ¥F— &, AR, 1989
» BE#IRTLIZ,
EH BEA ML ¥ & BRE, 1988
s OVEa—AN—FHZ27,
EHEA 15 % & BRE, 1995
« BHEHT—XTIFY,
BA B E BRE, 1995

44

22

SE5E (KRFRENF—

AVEL—RTF—FTIF v FENTIO—F F4R

#ik#t, 2008
AVEI—RT7—FTIF v,

HE E— F EREFE, 1989
HAWS AT LIS

=Ml BA ML ¥ E BRE, 1988
avEa1—BN—KHz27

HE HA, BB s S, BRE 1995
HEWT—FTIFv,

BB & BRE 1995

Tk, BIRNHNIL)

’\71"4./ &’\‘?—//’

SEE(TtEUITIICE

MIPS
Assembly

Language
Programmmg

Robert L Britton

MIPSD 7L T IHELLHAYET. mALTY.

HEERAHNIL)

M PS

Run

MIPSELInUXDEIA Hh MY ES. HEID.

46

23

i EELWEZEDRTH ?

EAEABRTS ! >> BERGER!
= HLLM!

HOSIELEE . . .

s HOBIEVEEET D !

FTmDHAEIL. . .

» REDHHEET D !

hhor=mlE. . .
= DHF!

47

20094 R #4 TOKYO TECH

HEMT—FToF v E—)

2. MK, TRLABEERR

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

24

AVEA—R(UN—FD7) DHHEMNLGESR

‘ =AY 6 ’
AR ITT—R WEEYNT—FTFHFr
aEa—4

Jotyy

ARB

il 1D
iR
T—HRISR HAh
49

Instruction Set Architecture (ISA) Type Sales

O Other
B SPARC
1400 W Hitachi SH
?) 1200 B PowerPC
9]
© 1000 Motorola 68K
o B MIPS
o
©
0
ey
K=l
=

800 O1A-32
600 O ARM
400
200 ﬂ

Ni=Iu I I B

1998 1999 2000 2001 2002

PowerPoint “comic” bar chart with approximate values (see text for correct values)
50

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

25

Where is the Market?

B Embedded

1200+ 1122 0 Desktop
B Servers

Millions of Computers

1998 1999 2000 2001 2002

51

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

RISC - Reduced Instruction Set Computer

» RISC philosophy +——— CISC
« fixed instruction lengths Complex Instruction Set Computer
= load-store instruction sets
= limited addressing modes
= limited operations

= Sun SPARC, HP PA-RISC, IBM PowerPC,
Compagq Alpha, MIPS, ...

Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability,
memory space (embedded systems)

52

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

26

MIPS R3000 Instruction Set Architecture (ISA)

= Instruction Categories Registers
= Computational
= Load / Store RO-Rsl
= Jump and Branch
= Floating Point
= COprocessor | PC |
= Memory Management | HI |
= Special | LO |
3 Instruction Formats: all 32 bits wide
| OoP | rs | rt | rd | sa | funct | R format
| OoP | rs | rt | immediate | | format
| OoP | jump target | J format

53

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: MIPS Register Convention

Name Register Usage Preserve

Number on call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$vO0 - $vl 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

54

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

= MIPS assembly language arithmetic statement
add $tO0, $sl1l, $s2
sub $t0, $sl1l, $s2

= Each arithmetic instruction performs only one
operation
= Each arithmetic instruction fits in 32 bits and specifies
exactly three operands
destination <« sourcel op source2

= Those operands are contained in the datapath’s
register file ($t0,$s1,%$s2) — indicated by $

= Operand order is fixed (destination first)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

55

MIPS Arithmetic Instructions

ithmetic statement

operation

= Each arithmetic ingtruction fits in 32 bits and specifies
exactly three opefrands

destination <« sourcel source2

= Operand order is fixed (destination first)

= Those operands are contained in the
register file ($t0,$s1,$s2) — indicated by $

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

56

28

Machine Language - Add Instruction

= Instructions, like registers and words of data,
are 32 bits long

= Arithmetic Instruction Format (R format):

add $t0, $sD, $s2

l OD(‘ rs \ rt \ rd \ shamt \ f?nct ‘
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

57

MIPS Immediate Instructions

= Small constants are used often in typical code

= Possible approaches?
= put “typical constants” in memory and load them
= create hard-wired registers (like $zero) for constants like 1
= have special instructions that contain constants !

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15
= Machine format (I format):
L op | s | ot | 16 bit immediate | | format

= The constant is kept inside the instruction itself!
= Immediate format limits values to the range +2%-1 to -21°

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

58

29

= f=(g+h)-(i+j)

f, g, h i, jZZNThLIRE $0, $s1, $s2, $s3, $s4
[CEIY{FHT5ET 5.

EDARF—rAUREQV AL ILLE=REREDOMIPST T
r—ay-a—RIEESLBH.

d d fi jzatic ad / >
i EE (SFE 48R—Y)
= f=(g+h)-(i+]j)
f,9,h i, jZFNEFNLPRE $s0, $s1, $s2, $53, $s4
ZEYHITBHETS.
FDRTF—FAUREQV A ILLT=HERDMIPST T
r—ay-a—RFES4LDH.
add $t0, $s1, $s2 #$t0=(g+ h)
add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #
60

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

30

MIPS Memory Access Instructions

= MIPS has two basic data transfer instructions for
accessing memory

Iw $t0, 4($s3) # load word from memory
sw $t0, 8($s3) # store word to memory

= The data is loaded into (Iw) or stored from (sw) a
register in the register file

= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

= A 16-bit field is limited to memory locations within a region of
+213 or 8,192 words (+215 or 32,768 bytes) of the address in the
base register

61

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Machine Language - Load Instruction

= Load / Store Instruction Format (I format):
Iw $t0,; 24($s2)

| op rs | rt | 16 bit offset |
Memory
24,, + $s2 = OXFFFFFfff
... 0001 1000 $t0|+«—_ [0x120040ac
+...1001 0100 OX12004004
...10101100= $s2— X
0x120040ac
0x0000000c
0x00000008
0x00000004
0x00000000
data word address (hex) 62

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

31

= g=h+A[8]
100EBEM L RABELHIANSH D ET D, £z, AV INATITE
#o, h ITLYRAZ $s1, $s2 #E|YHIT5H. SHIZEHID
BIA7RL R (& $s3 IZ#iHDNTLVNSET B.
LDRT—RAVREOV L IILE L.

d d fi jzatic d e 03
i BE (5FF 50R—Y)
= g=h+A[g]
100N AHBLSIAD HDHET D, Fiz, AVNATIEE
#o, h ITLYRAZ $s1, $s2 #E|YHIT5H. SHIZEHID
BIIR7RL R (X $s3 [CHIHLNTNDET 5.
LDRT—FAVREOV NS ILE K.
w $t0, 32($s3) # $t0 = A[8]
add $s1, $s2, $t0 # g =nh+ $t0
64

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

32

= A[12] = h + A[8]

1008EM LR ABLHIAD HHET B, Ff=, AV/NAFFE
2o, h [CLYRA $s1, $s2 &Y T5. SHIZEESI D
BB 7L R $s3 ICHHLNTLNSET B,
EDRTF—FAUREIV AL E &L

65

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i EE (BFE 5IN—Y)

= A[12] = h + A[8]

1008EM LR ABLHIAD HHET B, Ff=, AV/NAFFE
2o, h [CLYRA $s1, $s2 &Y T5. SHIZEESI D
BB 7L R $s3 ICHIHLNTLNDET B,
EDRTF—FAUREIVISMILE &L

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $tO

66

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

33

MIPS Control Flow Instructions

= MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl
beq $s0, $s1, Lbl #go to Lbl

if $s0«$si
if $s0=%s1

= Ex: if (i==j) h=1 + j;
bne $s0, $sl1, Lbl1l
add $s3, $s0, $si

Lbl1l:

= Instruction Format (I format):

| op | rs | rt | 16 bit offset |

= How is the branch destination address specified?
67

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Specifying Branch Destinations

= Use a register (like in Iw and sw) added to the 16-bit offset
= Which register? Instruction Address Register (the PC)

= its use is automatically implied by instruction
= PC gets updated (PC+4) during the fetch cycle so that it holds the

address of the next instruction
= limits the branch distance to -215 to +25-1 instructions from the
(instruction after the) branch instruction, but most branches are

local anyway from the low order 16 bits of the branch instruction
6

sign-extendf_\
I I |‘ I [od

branch dst
32 325 address
| BC - h sz
2 4 - 32
68

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

34

More Branch Instructions

= We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need
yet another instruction, slt
= Set on less than instruction:
slt $t0, $sO0, $sl # if $s0 < $si then

$t0 = 1 else
$t0 =0
= Instruction format (R format):
| op |rs | rt | rd | |funct |

69

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

More Branch Instructions, Con’t

= Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions
= less than blt $s1, $s2, Label

slt $at, $s1, $s2 # $at set to 1 if
bne $at, $zero, Label # $s1 < $s2

= less than or equal to ble $s1, $s2, Label
= greater than bgt $s1, $s2, Label
= great than or equalto bge $s1, $s2, Label

= Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler
= Its why the assembler needs a reserved register ($at)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

70

35

Other Control Flow Instructions

= MIPS also has an unconditional branch instruction or
jump instruction:
Jj label #go to label

= Instruction Format (J Format):

| op | 26-bit address
from the low order 26 bits of the jump instruction

——

L, [od
|
] PC eone
T
ization and Design, Patterson & Hennessy, © 2005 &
HE (BEFE 64X—)
= f,0,h i jFEHTHS. ThEhE $s0 Hio $s4I
ZYFTS. SOA—FZAVNAILLEHERERE.
if i==j) f=g+h; elsef=9g-h;
72

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

36

i EHE (BEE 64R—Y)

« f,0, 00| [TEHTHS. ThENE $50 Hid $s41Z
2YT5. COA—FZaV AL EE R,

ifi==j) f=g+h; elsef=g-h;

bne $s3, $s4, Else # if (i!=j) goto Else
add $s0, $s1,$s2 #f=g+nh
J Exit # goto Exit
Else:
sub $s0, $s1,$s2 #f=g-h
Exit:

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

73

s L—TEFALTIANS100ETHDEEHELZKRDHBDT
2 IS%ERE.

K&, PHEES,
FHEESY—IW@ERET)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

74

37

‘ Aside: Branching Far Away

= What if the branch destination is further away than
can be captured in 16 bits?

0 The assembler comes to the rescue — it inserts an
unconditional jump to the branch target and inverts the

condition
beq $s0, $s1, L1
becomes
bne $s0, $s1, L2
J L1
L2:

76

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

38

Instructions for Accessing Procedures

= MIPS procedure call instruction:
jal Procedure-Address #jump and link

Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return

Machine format (J format):

[_op | 26 bit address

Then can do procedure return with a
jr $ra #return

Instruction format (R format):

| op | rs | |funct |
77

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Aside: How About Larger Constants?

= We'd also like to be able to load a 32 bit constant into a
register, for this we must use two instructions
= a new "load upper immediate" instruction
lui $t0, 1010101010101010
16 | o | 8 | 1010101010101010]

= Then must get the lower orger bits right, use
ori $t0, $t0, 4010101010101010

| 1010101010101010 | 0000000000000000 |

0000000000000000 1010101010101010

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

78

39

MIPS ISA So Far

Category Instr Op Code Example Meaning
Arithmetic add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3
R&I subtract Oand 34 | sub $s1, $s2, $s3 $s1 = $s2 - $s3
format)
add immediate 8 addi $s1, $s2, 6 $s1=$s2 + 6
or immediate 13 ori $s1, $s2, 6 $s1 =$s2v 6
Data Transfer | load word 35 Iw $s1, 24($s2) $s1 = Memory($s2+24)
(I format) store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1
load byte 32 b $s1, 25($s2) $s1 = Memory($s2+25)
store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1
load upper imm 15 lui $s1,6 $s1 = 6 * 216
Cond. Branch | br on equal 4 beq $si1, $s2, L if ($s1==%$s2) go to L
(I1&R - _
format) br on not equal 5 bne $s1, $s2, L if ($s1 1=$s2) goto L
set on less than Oand 42 | slt $s1, $s2, $s3 if ($s2<$s3) $s1=1 else
$s1=0
set on less than 10 slti $s1, $s2, 6 if ($52<6) $s1=1 else
immediate $s1=0
Uncond. jump 2 j 2500 go to 10000
Jump V& |, . .
R format) jump register Oand8 jroostl go to $tl
jump and link 3 jal 2500 go to 10000; $ra=PC+4 79
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
AN
SHDEED, MIPS R3000 ISA
= Instruction Categories Registers
= Computational
RO - R31
= Load / Store
= Jump and Branch
= Floating Point
= Memory Management PC |
= Special HI |
LO |
3 Instruction Formats: all 32 bits wide
| oP | rs | rt | rd | sa | funct | R format
L o |rs |t | immediate(tebiy | !format
| OoP | jump target (26bit) | J format
80

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

40

2009-05-07 20094 #5243 TOKYO TECH

W HERTETIT B 6

\\\

3. msX, TRLREEERK

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

i Acknowledgement

= Lecture slides for Computer Organization and
Design, Third Edition, courtesy of Professor Mary
Jane Irwin, Penn State University

= Lecture slides for Computer Organization and
Design, third edition, Chapters 1-9, courtesy of
Professor Tod Amon, Southern Utah University.

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

41

ZEE FHEATZELY)

O

f“)}'—}/&’\ o —

n :I/I:"J.—’J"U)*ﬁﬁﬁﬁiﬁﬁ' %Sﬂﬁ /i”)”— —
Yo &ARI—(FRERE R). AREBP jJtJ 9
#t. 2006
AVEL—ET7—FTIOF v ERNTTO—F F4hR
Mikzt, 2008

AVE1—RT7—FTUF v,

M ¥F— &, AR, 1989
» BE#IRTLIZE,

EH BEA ML ¥ & BRE, 1988
. :ut“::.—’;‘l/\—b'jl

HE A, T8 L E, BRE, 1995
. 51'%1%7—#7_'77"\’

BA Bt E BRE 1995

BEE (T VI SICEKINHNIL)

M PS

Run

M Dominic Sweetman

MIPSD T LT SHECHMAYEST. EEALTT. MIPSELInUXDEIA Hh MY ES. HEID.

42

Aside: How About Larger Constants?

= We'd also like to be able to load a 32 bit constant into a
register, for this we must use two instructions

= a new "load upper immediate" instruction
flui $t0, 1010101010101010
[16 | o [8 [1010101010101010 |

= Then must get the lower orger bits right, use
ori $t0, $t0, 4010101010101010

| 1010101010101010 | 0000000000000000 |

0000000000000000 1010101010101010

[1010101010101010 | 1010101010101010 |

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS ISA So Far

Category Instr Op Code Example Meaning
Arithmetic add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3
R&I subtract 0and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3
format)
add immediate 8 addi $s1, $s2, 6 $s1=$s2 + 6
or immediate 13 ori $s1, $s2, 6 $s1=$s2v 6
Data Transfer | load word 35 Iw $s1, 24($s2) $s1 = Memory($s2+24)
(I format) store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1
load byte 32 b $s1, 25($s2) $s1 = Memory($s2+25)
store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1
load upper imm 15 lui $s1,6 $s1 = 6 * 216
Cond. Branch | br on equal 4 beq $si1, $s2, L if ($s1==%$s2) go to L
(I1&R . —
format) br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) goto L
set on less than 0 and 42 sit $s1, $s2, $s3 if ($s2<$s3) $s1=1 else
$s1=0
set on less than 10 slti $s1, $s2, 6 if ($52<6) $s1=1 else
immediate $s1=0
Uncond. jump 2 j 2500 go to 10000
Jump V& |. . .
R format) jump register Oand 8 jroostl go to $tl
jump and link 3 jal 2500 go to 10000; $ra=PC+4
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

43

Aside: Loading and Storing Bytes

= MIPS provides special instructions to move bytes
Ib $t0, 1($s3) #load byte from memory
sb $t0, 6($s3) +#store byte to memory

| op | rs | rt | 16 bit offset |

= What 8 bits get loaded and stored?

= load byte places the byte from memory in the rightmost 8 bits of
the destination register
= what happens to the other bits in the register?

= store byte takes the byte from the rightmost 8 bits of a register
and writes it to a byte in memory

= what happens to the other bits in the memory word?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Byte Addresses

= Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

= The memory address of a word must be a multiple of 4
(alignment restriction)

= Big Endian:

= leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, SPARC, HP PA

= Little Endian:
= rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)
little endian byte 0
3 2 1 0
msb Isb

0 1 2 3
big endian byte 0

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

44

Aside: Spilling Registers

= What if the callee needs more registers? What if the
procedure is recursive?

= Uuses a stack — a last-in-first-out queue — in memory for
passing additional values or saving (recursive) return

address(es .
(e) One of the general registers,

$sp, is used to address the
stack (which “grows” from high
address to low address)

add data onto the stack — push

$sp=$sp -4
data on stack at new $sp

high addr

top of stack [« $sp

remove data from the stack — pop

low addr data from stack at $sp
$sp =$sp + 4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

MIPS R3000 ISA

= Instruction Categories Registers
= Computational
= Load / Store RO-R31
= Jump and Branch
= Floating Point
= Memory Management | PC |
= Special | HI |
I LO |
3 Instruction Formats: all 32 bits wide
| oP | rs | rt | rd | sa | funct | R format
| op [rs | rt | immediate6biyy | !format
| OoP | jump target (26bit) | J format

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

45

i EE

» TEVITSERYE.

swap (int v[], int k)
{
int temp;
temp = v[k];
vlk] = v[k+1];
v[k+1] = temp;

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

K&, #HEES,
FHESY—IWERT)

46

i Exercise 2

void max (int v[], int n)

{
int |;
for (i =1; i <n; i +=1){
if (v[i-1] > v[i]) swap(v, i-1);

i Exercise 3
void sort (int v[], int n)
{

int i, J;

for (i =0; i <n; i +=1{

for (j=i-1; j>=0 && v[jI>v[j+1]; j—=1) swap(v, j);

}

}
94

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

a7

HEAO HRES

» FEERAOFERE
» 131.112.16.56

= ssh arche@131.112.16.56

« A—H4: arche

s SRT—FIIEEZBFER
= mkdir myname (f5l: mkidr 06B77777)
= cd myname (f51: cd 06B77777)

=
<
L] Ij': :%\ nﬁ\\

» ETEHSEEEILITSNERCsshTEETELRLANBLAEE AL
= Windowsh (& Tera Term 7 EZFIBAL TS,

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Sample program

AVNASDRBE AT avEEBLELD,
inclide =stdioh= EDIIGMEHMNEASNENHLTHS.
int main(){

inti;

int sum = 0;

for(i=1; i<=100; i++) sum +=i;

return sum;

¥

mipsel-linux-gcc -00 -S main.c -o main_opt0.s
/home/share/cad/mipsel/usr/bin/mipsel-linux-gcc
96

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

48

main:
JFrame 3fp, 24, 331
mask 0=40000000, -§
Jfmask 0x00000000, 0
Sample prog I'am .zet noreorder
zet nomacro
addiu 3szp, $S[E, —2;1
. 0 2 $fp, 16 (3sp
#'nC|Ude <Std|0h> nove 3, $=p
s 30, 5(3m)
H H 1i 32,1
int main(){ s 82, 12 ($fp)
. .] 3L2
inti; nop
. A 3L3:
int sum = 0; lu $3, 8(3#0)
Lt 32, 12 (3fp)
nop
addu 32,33, 32
1] 32, 8(9‘2'Fp))
e - Lu 32,12 (3fp
for(i=1; i<=100; i++) oo
. addiu 32, $2,(1)
+=1: U 32, 12(3fp
sUum L 3Lz
u 32, 1203
nop
zlt 32,42, 101
o hne 32,30,3L3
return sum; nop
} u 32, 5(3fn)
nove $=p, $fp
u 3fp, 16 {%sn)
- . - . addiu $=p, $=p, 24
mipsel-linux-gce -00 -S main.c -o main_opt0.s i e
nop 97
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
Sample program
mipsel-linux-objdump -d ./a.out
#include <stdio.h>
0040050 <[EF>
4005c01 2Thoffed addiu sp,sp, -24
400504 3 afhel010 =0 =8, 16(=p)
. . 40058 3 03a0F021 move =8, 50
int main(){ 400fce aFc00008 s zern, 5(sB)
; } 4005d0: 24020001 1i v, 1
nti: 4005c4 1 afcZ000c =] v, 12(s8
? 400503 1000000 2] 400604 < + 04>
: — - 40052 Q0000000 nop
int sum = 0; 4005201 BFE30008 1o v1,8(:8)
400524 1 Bfc2000c 1w w0, 12(s8)
4005e8 1 00000000 nog
4005ec; 00521021 addu Y,y](., V)O
1=1" i<— - 4005f0: afc20008 = v, 8(=8
fOI‘(I—l, 1<=100; '++) 40054 2 8fc2000c i w0, 12(=8)
. 4005£3: Q0000000 nop
sum += 1, 4005Fc: 24420001 addiu wO,v0, 1
400800 3 afc2000c = v, 12{s8)
400804 1 Bfc2000c 1w w0, 12(s8)
400808 1 00000000 nop
. 40080c 3 28420085 slti v, v, 101
return sum; 400810 1440753 brez v0, 400560 <ERTE+0x20>
400814 Q000000 nop
} 4008132 Efc20008 Lu w0, E(s8)
400812 03c0e221 MOvE =P, 28
4008201 Efkbe0010 1w =8, 16{sp)
400824 1 2Thd0018 addiv sp,sp, 24
400828 1 03=00008 dr ra
40082c 00000000 nogp
98

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

49

Sample program

main:

Jgrame F=p, 0,351
Jgiask Q0000000 0
Lmask 000000000, 0
L2t noreorder
L2t nomacro

. J 31

BRI TEER 1i 32, 5050

Makefile

all:

mipsel-linux-gcc -0O0 -S main.c -0 main_opt0.s
mipsel-linux-gcc -O1 -S main.c -0 main_optl.s
mipsel-linux-gcc -O2 -S main.c -0 main_opt2.s
mipsel-linux-gcc -O3 -S main.c -0 main_opt3.s

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

99

LAR—b RERE

void max (int v[], int n)
#OORAVNASIZTMIPSE STy MZav/A)LL, avisA LA T
2AVIZEOTEDNESIZE LTI ETED L.

void sort (int v[], int n)
ORI ZIZTMIPSE Sy Za/AJLL, av LAt
AVIZELOTEDELSIZEIL T ENEFTFEDH L.

B#IC, YO TWTFT)r—2avEERL, ThEIDORO2 /(312
TMIPSE S YNV /RAILL, AURAIILAToavIZE->TED &
SICEILTEINEFTLED L.

COREOBREEFEDHDHIL.
LiR—RZAARR2MBUNICEEDH B E. (T PDFETBIL)
(2B, a—RX/DSVXFETENEDLRLY.)

:_L L iR

= 5A13H (F&7F) FTICEFA—/LTIRH
» AKYBEICIRHELTLS GEREN) EBFR
= report_at arch.cs.titech.ac.jp

» BFA-ILDEANIL
= Arch Report [EE =]
= {5l : Arch Report [33_77777]

» KB, FEES

« [EZE
» PDFI77AILERNM (W3 PDFETSHIL)
« PDF77MILIZHL KA, FEBSZHRATLHIL.
» AARFET2MURNIZELEH DL,

20074 RIFHA

* AERT—FTIF v F— (B)

7t

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

51

i B (integer) DRI

n OVE1—RITRFSFEVMEFEAMELTT —2ENIE.
« IR, sEYhaYEa1—4 (&, SEYNEAITILE
s NEVFOBHRIFIL 2°n QONE)BHEOEHERI
TES. (LR TEGL)
= BEVRTHNIE, 278 = 256 BEDEH.
» RBTELHHEICIKRYHHS.
» DROBVRBEEMALT, EREBUERTS !
» BHRIRA
» FELGLERR
» FEOTHAERE
» 20FHER

T—EDXRH

= MSB: Most Significant Bit, fx_E{IMD#7
= LSB: Least Significant Bit, fx F I D#7

MSB LSB
0 0 0 0 1 0 1 1
N - v

8EwWk (1/34F) OT—%

6Ewk 5Ewk 5wk 5Ewk 5wk 6E vk

32Ewk (48(}) DTF—4

52

:_L B FELLEE

» HEIBHME2EHTRINT .
» 110 ThHNIE, 1011 ELTTFHREYRERDHS.
» FRIDEHS-EYREOTIENHS.
« BEVRTHNIEL, 0O~255F TN 256FNDEHER
HTES.
n ERGRTAE.
s BHERBFETEGL!

ojofofojafofafu]

N —

8EwYk (1/84F) ODT—%

i B e OTMAERE (1)

s HEABRHMEF2HEMTRIRT 5.
« 110 THNIE, 1011 ELTTFHREYRERDHS.
» 212U, REGEVFERAWTHEERT (FEEYR).
« mMAERLIE, HEEVIEO, BALIE1LTS.
» BolEVREO0THEDS.
» FERLERBEOBALGILE
» 8EVRTHNIE, - 127 ~127 FTH255@ D EHE R
{TELH?

+1110 0] 0 0 0 1 0 1 1

-1l |1 0 0 0 1 0 1 1
= > \ \/~ ™ /
mFEEYH 8EWk (1/34fF) OT—4

53

i B HEOEERERE (2)

s SEVRTHNIL, - 127 ~127 ETH255FNDE
BERETES?

n EOLT256DHERILTELELNDMN?

n THIE, FOIZEEED 2D HEMNS !
= TOTSIHREEER T REEELS.
« FEOEEMERENAFIASNDEFT DL !

+127 +0

-0 -127

B A5 OSHMMERE (3)

= H5—F, BEVIRD, S OESHEIERBF LR
(0000 00002 = +010 1000 00002 = -010

0000 00012 = +110 1000 00012 = -T1o

0000 00102 = +210 1000 00102 = —210

wm
0111 11012 = +1250 1111 11012

0111 11102 = +12610 1111 11102 = -12610
0111 11112 = #1270 1111 11112 = =127T10

FEOESEIMERBENFIASNDIEFDGRN !

-12510

54

:-L B2 DBHEI(1)

n ZLDOFTEHTIE 2D E (two's complement)
KRENFIHEIND.
s 2ODFEHDF R
» REGEYFDH TIEEFIFEITHE.
« FEDRIEENES.
» EVMEDREGLT—EINDEBRMNES.
» FELGLEHERUCN—FO 7 TMEEFRETES.

i B 2DBHMERI(2)

» ZOHIIZ, 1042 (one’s complement)
» ETOEVIERBERYTHET, IMFRERR

(0000 00002 = +010 1111 11112 = =010
0000 00012 = +110 1111 11102 = =110
128 0000 00102 = +210 1111 11012 = =210
*§¥E<
0111 11012 = +12510 1000 00102 = -12510
0111 11102 = +12610 1000 00012 = -12610
= -12T0

L 0111 11112 = +12710 1000 00002

55

:_L B 2 DBHRI(3)

» 20DFEBR
s (1OBYCREINEICIEMA-LD)EADHET S,

0000 00002
0000 00012
0000 00102

0111 11012
0111 11102
0111 11112

= +010
= +110
= +210

= +12510

+12610
+12710

1111 11112 = =010
1111 11102 = -T1o
1111 11012 = =210
1000 00102 = 12510
1000 00012 = -12610
1000 00002 = -12710
BOHD1OHHERR

1111 11112

-T10

1111 11102 = -210
1000 00112 = -12510
1000 00102 = -12610
1000 00012 = -12710
1000 00002 = -12810
BOHD20HHERR

20 TIE, —128 ~ 127 TTOHERIHTES.

i B 2DEMRI(4)

= 1O TRINER(EVIORER) [T1EMALDEZEDKET S.

s 20D
0000 00002 = +010
0000 00012 = +110
0000 00102 = +210
0111 11012 = +12510
0111 11102 = +12610
0111 11112 = 12710

BOHD20HHERR
1111 11112 = =10
1111 11102 = =210
1000 00112 = =12510
1000 00102 = -12610
1000 00012 = =12710
1000 00002 = -12810

56

B 20MHBKRE (D)

n 20DFEHL

= TOFBHTREINEH(EVIORER) [T1EMA-LDZEEDH
E9 5.

» 2OFEHRETIE, EEDOREGEHERIZERTES !
» FEICEB~DEH
« 2EMRIED1E0EREET 5. X
» BoNIzT—RIZ1EMZ 5.
» BHMNSEH~DOLEH NOT 1
- 2ERRED1L0ERET .
« BONIzT—RIT1EMZ5.

ALU, add
- X
i R 2DEHEE (6)
. B EENENEEE
» EVMBEOELBZT—H~DLH @

« fl: SEVEANBL12EYRDT—E~DZEH
. HELEREOWNE IIRRNREREENR
» EVMEZEEDT LS, REMEVFDETHETIXKLL.

1111 11112 = =110 111 1111 11112 = =10

1111 11102 = 210 1111 1111 11102 = =210
SR .

1000 00112 = -12510 I::> 1111 1000 00112 = -12510
1000 00102 = -12610 1111 1000 00102 = -12610
1000 00012 = -12710 1111 1000 00012 = -12710
1000 00002 = -12810 1111 1000 00002 = -12810

57

:-L B 2DWHRIE(7)
. B " INEEEEN

« EYMEDELLT—E~DEH @
« §l: SEVEMS12EYRDT—E~DLEH

. BEILEOME BN ([[]]

» EYMEBEZIBOTLEEICE, REMEVIDETHET NILKL.

sign X
= BH ‘1 g
: 4
AND
HEH X NEDHDIZEIZIZBEA. 4
Tnmn. .. T

EEIAE

o

@) sk, T—4mR

AEYTFEEAERYDRT L, T7AILAEYDRT L
AE2:BEERE, Fvylal AT LA
AEYZARBREEBEBVRTL(RT AV T—3y, R=DUT, &)
AEYA EFREET7AILAEIDERE, L E[REEIE, LIERE
BYRAHT:BYAHDLEM, B|Y;AHDIELE

B|YAH2: B AALIEBD G

A A FrrIL, FrRILTOTSLER

A AHEH2: AHMABEDTN, FrrILEMEDZIZEL

A AFIES : Fr)LDFELE, @IS FIE

LiR—hEEAREHERIC & VR

58

$ TFHIUR

s BRATINBLUVR7Va—)L
= Www.arch.cs.titech.ac.jp
 BERHENERICELEIENHDDT
HARICHERT DL

i LR—h R

void sort (int v[], int n)
{
int i, j;
for (i =0; i <n; i +=1){
for (j=i-1; j>=0 && v[jI>v[j+1]; j—=1) swap(v, j):
}
}

AVNASDOFBEILA T AV EEBLENDS,
EDLIBETIHNHEHNSNENHLTHS.

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

118

59

2009-05-014 20094 i TOKYO TECH

W HERTETIT B 6

4. s, TRLRIEBEERR

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

i B 2DEMRI(4)

n 20D

s 1OBBCTRINB(EVIORE) IS1EMALOEEDORETS.

0000 00002 = +010 BOBO2OHUKE

0000 00012 = +110 1111 11112 = =10

0000 00102 = +210 1111 11102 = =210
0111 11012 = +12510 1000 00112 = -12510
0111 11102 = +12610 1000 00102 = -12610
0111 11112 = +12710 1000 00012 = -12710
1000 00002 = —12810

60

B 20MHBKRE (D)

n 20DFEHL

= TOFBHTREINEH(EVIORER) [T1EMA-LDZEEDH
E9 5.

» 2OFEHRETIE, EEDOREGEHERIZERTES !
» FEICEB~DEH
« 2EMRIED1E0EREET 5. X
» BoNIzT—RIZ1EMZ 5.
» BHMNSEH~DOLEH NOT 1
- 2ERRED1L0ERET .
« BONIzT—RIT1EMZ5.

ALU, add
- X
i R 2DEHEE (6)
. B EENENEEE
» EVMBEOELBZT—H~DLH @

« fl: SEVEANBL12EYRDT—E~DZEH
. HELEREOWNE IIRRNREREENR
» EVMEZEEDT LS, REMEVFDETHETIXKLL.

1111 11112 = =110 111 1111 11112 = =10

1111 11102 = 210 1111 1111 11102 = =210
SR .

1000 00112 = -12510 I::> 1111 1000 00112 = -12510
1000 00102 = -12610 1111 1000 00102 = -12610
1000 00012 = -12710 1111 1000 00012 = -12710
1000 00002 = -12810 1111 1000 00002 = -12810

61

:L B2 DBHEI(7)

- HEHE [
» EYMEDRGST—A~DEHR @
« Bl SBEVEHIS12EVRDT—E~DEH
- BEREOME BN ([
«» EYMMEZIEDOTEEITE, REMEYVIDETHET IEELL.
sign X
= 41 g
SIL:)
AND
HHH X NEDHDISZEIZIZEBA. 4
Tnhi. .. T

i 2D DOME (1)

- BEEBHTIILHC BEULEROME LRI
HETED.

ML — 0000 110
0000 01112= 710
+ 000001102= 610

000011012=1310

62

$ 2D DME (2)

- BEEBHTIILHC BEULEROME LRI
HETED.

MEf — 1111110
000001112= 710
+ 1111 10102= -610

0000 00012= 110

HWE: X-Y =X+ (-Y)

i BHOKRBEDELED

FEELRE

FFEOTHERERE

1DHHRE

2DFHHRE

- BEHE VOB TERHIEASTHE.

- FRORENRS.

- EVMEORBHT—A~DERNES.

- BRLGLEMLALA—KOIT THEHEMEERETES.

63

» DREEOHIEZTRYIKRS.
 EHRDH

= 3.1419926... (1)

= 0.000000001, 1.0 x 10°

= 3,155,760,000, 3.1556 x 10°

;

BEEME: MEAOERICEIBFE—DLAENEL.
BRREBETENVRIETHREICONILEVLDZER L EMES.

i ElE /N mRIR

= HFEYFIASNGL !
- MNEADEEEEET S

INLS

FEEYE ﬂ

- 2.625

AN

1 0 1

0

1

0

1

0

1

0.5 0.25 0.125 0.0625

64

i FE/INRERRE()
s IR AIEALE

b
. RN CHIE TABEICOMT AN ESE AR A,

Yyvy
1. XXXXXXXXX X 2

e HEBED 1R # B

i FE/INRRIE(2)

s |EEE754
1&‘\\}'\ 85\\y}~ 23[:‘\“}'“
(32Ewh)
BE iR e
1Ewhk 11Ewk 52E vk
ERE ’ |
(64E k)
rasss FeEER R 2450

65

i FE)/INRRIE(3)

 BRE
» RYEIFAIHEER
= ROGNEVNTRETESHRITAR
- HBHSEHENECT, ADBRENRE

» RFTELGVNIERELH
» RIVTELGVEENSGHE
= FREICKEGHE, FEINSLBHORDER

= 10330 0.10 (&,
24 %1 0.0001100110011... ESTHIZBELIM?

2009-05-014 20094 i TOKYO TECH

W HERTETIT B 6

J0tygnRE

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

i MIPSOEERKBLZEDDATYT (RT—)

AEYDLIMBEITIVFI S.

MEZETaA—KRLELNL, LORIEHRAET.

MEEBEOETERIITRFLRADEREFITS.
s MEMRT—

T—RAEYRDARSURIZTIERTS.

HBRELORFIZEZAD.

133

i JObyHDEHIERESR

Read
address

Instruction

(31:0) [

Instruction
memory

’ A X

M

PC | ur~
X
. — -

.| Read I
register 1 |
ed Read | —-!

| Read data 1 |
register 2

.| Write d':faag -
register 4 —»

» Write
data Registers

67

TO0tvHDT—RINR (T)L A45)L)

| op | rs | rt | rd |shamt| funct |
add $t0, $s1, $s2 [add $8, $17, $18]

Instruction [5:0]

Instruction [25:21] Read
Read er 1
address register Read
Instruction [20:16] Read data 1
Instruction | 4 6] register 2
Bl "] write Pead Address 2ad
Instruction | | nstryction [15:11] | x register 8132
memory | 4 i
| Write
data Registers
Instruction [15:0] 16 Sign 32
extend

JO0tyYDERER()

68

Exercise

L_op [s

|

16 bit immediate | I format

addi $to, $t1, -1

K&, FHES,

FEFST—IVWMEBET)

[addi $8, $9, -1]

Exercise

L_op [1s

[]

16 bit immediate | I format

addi $t0, $t1, -1

[addi $8, $9, -1]

PC = 0x20
$9=7

0x24

address
Instruction
[31:0]

Instruction
memory

$9

Instruction [25:21]

Instruction [20:16]

Read
register 1 oo
Read data 1

Instruction [15:11]

$8

Instruction [15:0]

Q Read
b Write dataz

register 2

register

Write
data Registers

-1 (Oxffff)

Instruction [5:0]

69

TO0tvHDT—RINR (T)L A45)L)

| oo | rs | rn | 16 bit immediate | I format

addi $sp, $sp, 4 [addi $29, $29, 4]

Instruction [25:21] Foad
Read register 1
address Read
Instruction [20:16] nead data 1
Instruction ! register 2
[31:0] Read
Write Read Address "
Instruetion | | jnstruction [15:11] register 132
memory | 4
Write
data Registers
Instruction [15:0]

Instruction [5:0]

TO0tEvHDT—RINR (0T)L A45)L)

| oo | rs | | 16 bit immediate | | format

Iw $t0, 24($s2) [Iw $8, 24($18)]

Instruction [5:0]

Instruction [25:21
Read == riz?:lem
address Read
Instruction [20:16] fead data 1
Instruction ! register 2
[31:0] Read
Write nR?a‘zj Address "
Instruction | | |nstryction [15:11] register ata
memory | 4
| Wirite
data Registers
Instruction [15:0] 16 sign 32
extend

70

TO0tvHDT—RINR (T)L A45)L)

| oo | rs | rn | 16 bit immediate | I format

sw $t0, 24($s2) [sw $8, 24($18)]

Instruction [25:21] Foad
Read register 1
address Read
Instruction [20:16] nead data 1
Instruction ! register 2
[31:0] Read
Write Read Address "
Instruetion | | jnstruction [15:11] register 132
memory | 4
Write
data Registers
Instruction [15:0]

Instruction [5:0]

TO0tEvHDT—RINR (0T)L A45)L)

| oo | rs | | 16 bit immediate | | format

beq $s0, $s1, Label [beq $16, $17, Label]

Instruction [5:0]

Instruction [25:21
Read == riz?:lem
address Read
Instruction [20:16] fead data 1
Instruction ! register 2
[31:0] Read
Write nR?a‘zj Address "
Instruction | | |nstryction [15:11] register ata
memory | 4
| Wirite
data Registers
Instruction [15:0] 16 sign 32
extend

71

TOtyH DT —RINR (UL A(9)L)

|<— one clock period —»l

Program
execution . 200 400 600 800 1000 1200 1400 1600 1800
Time T T T T T T T T T

order
(in instructions)

w $1, 100($0) '"Sgégiﬂﬂlneg‘ A | D ‘Reg
Iw $2, 200($0) 800 ps e Reg| LU | DR Reg
w $3, 300(80) 800 ps el
=],
800 ps

Sample program

AVNNASORBILF T avEERBLEAD,

#include <stdio.h> SIMMipsTEATL, ZDETHA L EEHD.

int main(){
int i;
int sum = 0;

for(i=1; i<=100; i++) sum +=i;

return sum;

¥

mipsel-linux-gcc —static —O0 main.c —o a.out
SimMips a.out

/home/share/cad/mipsel/usr/bin/mipsel—linux—gcc144

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

72

LAR—b RERE

1. void max (int v[], int n)
ORIV IINSICTMIPSER Sy MZa/SAILL, AV ILA T avic
FOTEDKSIZETEINEFTFESH LK. Fiz, SimMipsTEITL, EfTYA

12
2. Vo

HEEd k.
id sort (int v[], int n)

#I0X3V/INASIZTMIPSER Sy Zav/RAJ)LL, VA IILA T aviz
FOTEDKIIZEILT I EEENH K. Ff=, SimMMipsTEITL, EITH4Y

2

HELLRE L

3. RIS, MELTTVTr—arEEmL, ThEIRRID /A SIZTMIPSHR
Sy IIRAILL, AU A T IUITELTED KSIZELT 2 E
FeH& Fiz, SimMipsTEITL, EF VAU HZELERE L.

4. ZOFRBEDORBEFEDHBHLE.

5. LiR—MEIA4RIEIMLUANIZEEDSBTE. (I PDFETBTE)

(2B%#8, a—FIZ/NEWXFETEANEDALY.)

ma DT ERIRE

» FEERAOFERE

131.112.16.56
ssh arche@131.112.16.56
« A—H4: arche
s SRT—FIIEEZBFTER
cd myname (#5l: cd 06B77777)
cp —r /home/arche/v0.5.5 .
cd v0.5.5

memory.cc HEFEELTIA /ML, EIT

N =r
<
L] Ij': :E\ uﬁ\\

HE#METEMNSIINEICsshTEETERLNELIEEA.
Windowsh 5l Tera Term ZEEZFI AL TSN,

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

73

:_L L iR

= 5A218 (F&7F) FTICEFA—/LTIRE
» AKYBEICIRHELTLS GEREN) EBFR
= report_at arch.cs.titech.ac.jp

» BFA-ILDEANIL
= Arch Report [EE =]
= {5l : Arch Report [33_77777]

» KB, FEES

« [EZE
» PDFI77AILERNM (W3 PDFETSHIL)
« PDF77MILIZHL KA, FEBSZHRATLHIL.
» AARRFRTIMLIAIZE LD D L.

2009-06-04 20094 #5243 TOKYO TECH

* SEET—FTIF v £— (E)

5. XE11:
HEBAAERYDRT L, T7AILAEYS AT Ls
Tl ®R- HEIFHEK

kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

74

i TR AHRIZKDERE

State . State
Element— Comblngtlonal — Element
1 logic 2

Clock cycle 4‘ ‘

i JOtyYDT—RINR(TILF-HAI)L)

i period period

l«— one clock —>l I‘- one clock -»

75

INMTSA IR (pipelining)

Program

exooution — 200 400 600 8OO 1000 1200 1400 1600 1800

order Time T T T T T T T T T

(ininstructions)

W $1,100(50) ‘”i‘;;“,ﬁ"’”lﬁeg ALY ‘a?fé?s Reg

W $2, 200($0) 800 ps el reg| Aau | DM Reg

W $3, 300($0) 800 ps e
_—
800 ps

Program

exeoution 200 400 600 8OO 1000 1200 1400

order Time T T T T T T T

(in instructions)

w §1,100($0)| ™| |Res| A | DE2 |Reg

|
w $2, 200($0) 200 ps |"ee™| |Res| AU | 2% e
|
w $3, 300($0) 200 ps | ™| |Reg| A | DR F‘eg‘

200ps 200ps 200 ps 200 ps 200 ps

151
O — -~ - . -
INMTSA AR (pipelining)

Program

execution 200 400 600 800 1000 1200 1400 1600 1800
order Time T T T T T T T T T
(in instructions)

W $1, 100($0) ‘nsft;;dhmﬁlﬁeg- Dot ke

W $2, 200($0) 800 ps o Reg | AL Reg

w $3, 300($0) 800 ps o

e
800 ps

Program

exeoution — 200 400 600 800 1000 1200 1400

order Time T T T T T T T

(in instructions)

lw $1, 100($0) | ™Hructen

|
w $2, 200($0) 200 ps | et Reg
w $3. 300($0) 200 ps | " Reg‘
200ps 200ps 200 ps 200 ps 200 ps
152

76

i Tty ND3DNEHRAR
s VT A)L
n 7)[/3""&’{7)[/

153

2009-06-04 20094 #5243 TOKYO TECH

* HEET—XTOFv E£— (BE)

5. XE11:
HEBAAERYDRT L, T7AILAEYS AT Ls
T HEIYER

kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

77

i AVEaA—R(UN—FDIT7) DEHBNETER

[a5
TR [ARV—TFA T AT L
avEa—4
oty

AAB

) 0
iR
T—HIR HAh
N /

i Processor-Memory Performance Gap

MProc
,~ 55%lyear
(2X/1.5yr)

o

10000
“Moore’s Lav‘v/”'/,/'/'/rv
1000 Processor-Memory
100 Performance Gap
// (grows|50%/year)
10 7 \DRAM
7%l/year
1 n 1T 1rrrrrrrrT T T T T T T T T T T T T T (2X/1Oyrs)

D I H DS >
D DY O T LT L
P

L 4

Performance

78

Machine Clock Rate

= Clock rate (MHz, GHz) is inverse of clock cycle time

(clock period)

Clock period = 1/ (clock rate)

I‘—one clock period—'l

10 nsec clock cycle => 100 MHz clock rate

5 nsec clock cycle => 200 MHz clock rate

2 nsec clock cycle => 500 MHz clock rate

1 nsec clock cycle =>
500 psec clock cycle =>
250 psec clock cycle =>

200 psec clock cycle =>

1 GHz clock rate
2 GHz clock rate
4 GHz clock rate
5 GHz clock rate

Clock Cycles per Instruction, CPI

= Not all instructions take the same amount of time to execute

for a program ~ for a program X

CPU clock cycles # Instructions Average clock cycles
per instruction

= Clock cycles per instruction (CPI) — the average

number of clock cycles each instruction takes to execute

= CPI =10.0
= CPI=1.0
= CPI=05
= CPI=0.1

79

The “Memory Wall”

= Arithmetic vs DRAM speed gap continues to grow

1000

= 3
e 3
c 100 + S
= =
S 10 4 ——Core <
= x
7] —— Memory a)
= 1 -
. [}
8_ o

0
0 0.1 X
S P9
3 oo1 ‘ O

VAX/1980 PPro/1996 2010+

Memory Performance Impact

A processor executes at .
= ideal CPI = 1.1 05
= 50% arith/logic, 20% control, 30%b Id/st

= 109% of data memory operations miss

with a 50 cycle miss penalty DataMiss,
15

CPI = ideal CPI + average stalls per instruction
= 1.1(cycle) + (0.30 x 0.10 x 50 (cycle/miss))
=1.1cycle+ 1.5cycle=2.6

58% of the time the processor is stalled waiting for
memory!

A 1% instruction miss rate would add
an additional ? to the CPI!

Answer 0.5

Ideal CPI,
11

80

The Memory Hierarchy Goal

= Fact:
Large memories are slow and

fast memories are small

= How do we create a memory that gives the illusion
of being large, cheap and fast ?
= With hierarchy (F§/E)
= With parallelism (3i%|t%)

A Typical Memory Hierarchy

By taking advantage of the principle of locality (BAr4#)
Present much memory in the cheapest technology

at the speed of fastest technology
.................................. PR -
E On-Chip Components A
1] Control | .-
' Main Secondary
= ~es : | ‘Memory Memory
Datapath[= : (DRAM) (Disk)
3| B
QD'l'.\ﬂ-.n.-.-.-i-—.-....-u-ph--_-= ! =
Speed (%cycles): ¥'s 1's 10's 100’'s 1,000's
Size (bytes): 100’'s K's 10K’s M’s G'stoT's
Cost: highest lowest

81

DRAM (dynamic random access memory)

SRAM (static random access memory)

82

Characteristics of the Memory Hierarchy

Processor

!

4-8 bytes (word)

Increasing L1$
distance t
from the 8-32 bytes
processor in L23 (b\é@
access time

Main Mem

1 to 4 blogks
ory

1,024+ bytes (Nsk sect

Secondary Memory

(Relative) size of the memory at each level

Inclusive (&1$8) -
what is in L1$ is a
subset of what is
inL2%$ isa
subset of what is
in MM that is a
subset of is in SM

or = page)

Memory Hierarchy Technologies

= Caches use SRAM for speed
and technology compatibility

= Low density
(6 transistor cells), high power,
expensive, fast

= Static: content will last
“forever” (until power turned off)

21
Address —|
Chip select —,

SRAM |16

Output enable —{ o5\1 v 16 -

Write enable]

Din[15-0] —!
16

Dout[15-0]

= Main Memory uses DRAM for size (density)
= High density (1 transistor cells), low power, cheap, slow
= Dynamic: needs to be “refreshed” regularly (~ every 8 ms)
= 1% to 2% of the active cycles of the DRAM
= Addresses divided into 2 halves (row and column)
= RAS or Row Access Strobe triggering row decoder
= CAS or Column Access Strobe triggering column selector

83

Memory Performance Metrics

» Latency(LATUY, ERM):
Time to access one word
= Cycle time: time between requests

= Access time: time between the request and when the data
is available (or written)

= Usually cycle time > access time
» Bandwidth (/N> RiE, RJL—TFvh):
How much data from the memory can be supplied to
the processor per unit time
= width of the data channel * the rate at which it can be used

Classical RAM Organization (—Square)

bit (data) lines
R P . .
0 | _— Each intersection
w i represents a
6-T SRAM cell or
D RAM Cell a 1-T DRAM cell
e Array
c
0
d word (row) line
e
r
row M Column S_ele(_:tor & column
address I/O Circuits address
] One memory row holds a block
of data, so the column address
data bit or word selects the requested bit or word

from that block

Classical DRAM Organization (—~Square Planes)

—_
“l+<=— bit (data) lines
S) s Mo | s
R 4 B8 . .
o] F— Each intersection
w S represents a
RAM Cell B 1-T DRAM cell
D Array T R
e ——
g 1 R e word (row) line
d B8 % P
© i
r
column
- address
N Column Selector &
;(t)llvt\zllress I/0 Circuits The column address
i . dgta bit selects the requested
data bit * ~xa bit from the row in each plane
data bit saraW
Classical DRAM Operation
Column
; R Add
= DRAM Organization: ress |— Ncols —|

= N rows x N column x M-bit
= Read or Write M-bit at a time

= Each M-bit access requires
a RAS / CAS cycle

DRAM
oo Row

A Address
1

/|’/

/| M bit planes

|-— N rows —>|

Cycle Time M-bit Output
1stM-bit Access ond M-bit Access
1 ——eeep| 1 ——eeep|
RAS \ R 1
1 1 1 |
cAs | | : \ /
:X RowlAddresé(Col AddressX ! X RowlAddresé(Col AddressX ! X:
T T T T

85

Page Mode DRAM Operation

Column Address |._ N cols _.|

= Page Mode DRAM

N/

= N X M SRAM to save a row

After a row is read into the

DRAM

Row

/ Address

SRAM *“register”

Only CAS is needed to access
other M-bit words on that row

|-— N rows —-|

RAS remains asserted while CAS

/

is toggled)y M bit planes
. M-bit Output
Cycle Time
1st M-bit Access 274 M-bit 3rd M-bit 4th M-bit
1 — 1 1 —
1 1 1

RAS 3\ ! ! ! /

L 1 | | I 1
cas | \ I\ /7 \ /I \ /

— } 1 1 1 1
X RowlAddresg(Col AddressX Col AddressX Col AddressX Col AddressX
_ T 1 1 1 1

2009-06-11 20094 #5243 TOKYO TECH

W HERTETIT B 6

6. *E12:
HEBAAERYDRT L, T7AILAEYS AT Ls
Tl ®R- HEIFHEK

kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

86

The Memory Hierarchy Goal

= Fact:
Large memories are slow and

fast memories are small

= How do we create a memory that gives the illusion
of being large, cheap and fast ?
= With hierarchy (F§/E)
= With parallelism (3i%|t%)

A Typical Memory Hierarchy

By taking advantage of the principle of locality (BAr4#)
Present much memory in the cheapest technology

at the speed of fastest technology
.................................. PR -
E On-Chip Components A
1] Control | .-
' Main Secondary
= [: Memory Memory
Datapath[= : (DRAM) (Disk)
3| [
QDl.lﬂ.\ﬂ.lmli----..-u"“'.': ! =
Speed (%cycles): ¥'s 1's 10's 100’'s 1,000's
Size (bytes): 100’'s K's 10K’s M’s G'stoT's
Cost: highest lowest

87

DRAM (dynamic random access memory)

SRAM (static random access memory)

88

Characteristics of the Memory Hierarchy

Increasing
distance
from the
processor in
access time

Processor

!

L1$
*
! 8-32 bytes
L2% (hioxk)
*
v
, 1 to 4 bldgks
Main Q/Iemory \o\

1,024+ bytes (Nsk sect
Secondary Memory

4-8 bytes (word)

(Relative) size of the memory at each level

Inclusive (&1$8) -
what is in L1$ is a
subset of what is
inL2%$ isa
subset of what is
in MM that is a
subset of is in SM

or = page)

Classical RAM Organization (—Square)

“—mooo0omyg sSOX

row M

address

bit (data) lines

// Each intersection
i represents a
6-T SRAM cell or
RAM Cell a 1-T DRAM cell
Array

word (row) line

Column Selector &
I/O Circuits

l«—— column

address

l

data bit or word

One memory row holds a block
of data, so the column address
selects the requested bit or word
from that block

Memory Hierarchy Technologies

= Caches use SRAM for speed

and technology compatibility Addressi
= Low density Chip select —, SRAM |16
(6 transistor cells), high power, output enable | oM x 16 -
expensive, fast Write enable | Dout[15-0]
= Static: content will last Din[15-0] —~|
16

“forever” (until power turned off)

= Main Memory uses DRAM for size (density)
= High density (1 transistor cells), low power, cheap, slow
= Dynamic: needs to be “refreshed” regularly (~ every 8 ms)
= 1% to 2% of the active cycles of the DRAM
= Addresses divided into 2 halves (row and column)
= RAS or Row Access Strobe triggering row decoder
= CAS or Column Access Strobe triggering column selector

Classical DRAM Organization (—~Square Planes)

/
<]« bit (data) lines
S B e R oooo: o
R I . .
o] F— Each intersection
W R/B555: B8 represents a
RAM Cell 2 R 1-T DRAM cell
D Array T TR
e ——.
g I e word (row) line
d i [~
© EE
r
column
/ address
N Column Selector &
;(t)llvt\zllress I/0 Circuits The column address
i . dgta bit selects the requested
data bit " g bit from the row in each plane
data bit Jove

90

Classical DRAM Operation

Column
=« DRAM Organization: Address |— Necols —
= N rows x N column x M-bit
= Read or Write M-bit at a time

= Each M-bit access requires
a RAS / CAS cycle

DRAM
oo Row

A Address
1

/|’/

/| M bit planes

|-— N rows —>|

Cycle Time M-bit Output
1stM-bit Access ond M-bit Access
1 —eeeep | 1 —eeeep |
RAS) I /
1 1 1 1
cas ! | W \ I
:X RowlAddresé(Col AddressX 1 X RowlAddresé(Col AddressX 1 X:
Page Mode DRAM Operation
Column Address N cols
= Page Mode DRAM l'_ﬁ_'l
= N x M SRAM to save a row T
_ _ DRAM Row
After a row is read into the 2 | 7| Address
SRAM “register” > /
Only CAS is needed to access _l_
other M-bit words on that row r/
RAS remains asserted while CAS N x M SRAM _
is toggled 1 /I M bit planes
) M-bit Output
Cycle Time
1st M-bit Access 274 M-bit 3rd M-bit 4th M-bit
1 — 1 1 —
RAS) ! ; ! |
1 | S | __ |
cas | \ I\ /7 \ /I \ /

— } 1 1 1 1
X RowlAddresg(Col AddressX Col AddressX Col AddressX Col AddressX
_ T 1 1 1 1

91

Synchronous DRAM (SDRAM) Operation

Column Address +1

|<— N cols —-|
After a row is read into the SRAM T
register .. DRAM Row
Inputs CAS as the starting “burst” |7 Address
address along with a burst length =
Transfers a burst of data from a _L
series of sequential addresses within I/
that row N x M SRAM
/I M bit planes
Cycle Time M-bit Output
15t M-bit Access 2" M-bit 39 M-bit 4t M-bit
1 1 1 » J
RAS) ! : : /
1 1 1 1 [
cAs | \ : : A
_XRow AddressX Col Address X 1 1 ! X Row Add
— T 1 T T +

Other DRAM Architectures

= Double Data Rate SDRAMs — DDR-SDRAMs (and
DDR-SRAMS)

= Double data rate because they transfer data on both the
rising and falling edge of the clock

= Are the most widely used form of SDRAMs

= DDR2-SDRAMs

= DDR3-SDRAMs

92

EE

= 512K x 8E'wk (512KB) MSRAMZFLVT, 32E YT —2IBMD
AMB D AEYZEFEIRLI-L.

» SEDAEYFVT, FYTBIRIEFCS, T—4E5, 7TRLRE
BEDEGETRE.

K&, #HEES,
FHEESY—VWERT)

e

= 512K x 8E'wk (512KB) MSRAMZFLVT, 32E vk T—2IRMD
4AMB D AEYZEFRIRLI-L.
» SEDAEYFVT, FYTBIRIESCS, T—42E5(D), 7rRL

AEBA)DEHRERE.
AL9 |
| |
A18— A0 —+1a m m m
ol L - L
Not(A19) |

D31-D24 D23-D16 D15-D8 D7-DO

93

DRAM Memory Latency & Bandwidth Milestones

DRAM Page FastPage | FastPage Synch DDR
DRAM DRAM DRAM DRAM SDRAM
Module Width 16b 16b 32b 64b 64b 64b
Year 1980 1983 1986 1993 1997 2000
Mb/chip 0.06 0.25 1 16 64 256
Die size (mm2) 35 45 70 130 170 204
Pins/chip 16 16 18 20 54 66
BWidth (MB/s) | 13 40 160 267 640 1600
Latency (nsec) | 225 170 125 75 62 52

Patterson, CACM Vol 47, #10, 2004

= In the time that the memory to processor bandwidth doubles
the memory latency improves by a factor of only 1.2 to 1.4

= To deliver such high bandwidth, the internal DRAM has to be
organized as interleaved memory banks

Memory Systems that Support Caches

= The off-chip interconnect and memory architecture can
affect overall system performance in dramatic ways

on-chip
CPU
Cache
32-bit data
2 bus
32-bit addr
per cycle
Memory

One word wide organization (one word
wide bus and one word wide memory)

o Assume (RilR)
1. 1 clock cycle to send the address

2. 25 clock cycles for DRAM cycle time,
8 clock cycles access time

3. 1 clock cycle to return a word of data

0 Memory-Bus to Cache bandwidth

e number of bytes transferred from
memory to cache per clock cycle

94

One Word Wide Memory Organization

on-chip = The pipeline stalls the number of cycles
cPU for one word (32bit) from memory
TT = 1 cycle to send address
= 25 cycles to read DRAM
Cache = 1 cycle to return data

= 27 total clock cycles miss penalty
32-bit data bus

& [T 25cycles |
32-bit addr
per cycle M
emory = Number of bytes transferred per clock

cycle (bandwidth) for a single miss
= 4/ 27 =0.148 bytes per clock

One Word Wide Memory Organization, con’t

= What if the block size is four words?
. 1 cycle to send 1st address

on-chip
= 4* 25 =100 cycles to read DRAM
%Pir . 1 cycle to return last data word
= 102 total clock cycles miss penalty
Cache
T 25cycles
[T 25cycles T
jbus E [T Z5cydles
[T 25cycles T
Memory

= Number of bytes transferred per clock
cycle (bandwidth) for a single miss
= (4x4)/102=0.157 bytes per clock

95

One Word Wide Memory Organization, con’t

= What if the block size is four words and
if a fast page mode DRAM is used?

-chi
oncnip = 1 cycle to send 1st address
CPU s 25+ (3 *8) =49 cycles to read DRAM
JC = 1 cycle to return last data word
Cache = 51 total clock cycles miss penalty
[T 25cycles |
bus I8 cyclesill
[[8cyclesil
[CI8cyclesill
Memory
= Number of bytes transferred per clock
cycle (bandwidth) for a single miss
s (4x4)/51=0.314 bytes per clock
Interleaved (/>4—1)—7) Memory Organization
on-chip OFor a block size of four words with
CPU interleaved memory (4 banks)
JC B 1 cycle to send 1st address
) B 25 + 3 = 28 cycles to read DRAM
cache B 1 cycle to return last data word
R B 30 total clock cycles miss penalty
us
T >5cycles
[T 25cycles T
Memory|| Memory|| Memory|| Memory T >5cycles
bank 0 |[bank 1 ||bank 2 ||bank 3 [T 25cycles

= Number of bytes transferred per
clock cycle (bandwidth) for a single
miss

= (4 x4) / 30 = 0.533 bytes per clock

96

2009-06-18 20094 #5243 TOKYO TECH

W HERTETIT B 6

7. *E3:
Ty a AT L
TH R FEIFEER

kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

i The Memory Hierarchy Goal

s Fact:
Large memories are slow and
fast memories are small

= How do we create a memory that gives the illusion
of being large, cheap and fast ?
= With hierarchy (F§E)
= With parallelism (3i%|t%)

97

A Typical Memory Hierarchy

By taking advantage of the principle of locality (BAr#)
Present much memory in the cheapest technology
at the speed of fastest technology

On-Chip Components

1] Control |
3 oIl
83
- g =
Datapath
@ [9)
Q Q o)
1 &g
Z 85| | _._
Speed (%cycles): ¥'s 1's
100’'s K's

Size (bytes):
Cost:

highest

Main Secondary
: Memory Memory
i | (DRAM) (Disk)
--------'--'I'-'hﬂ-lm-i—..-..u‘.h....=.: - =
10’s 100’s 1,000's
10K’s M’s G'stoT’s
lowest

Characteristics of the Memory Hierarchy

Increasing
distance
from the
processor in
access time

Processor

!

4-8 bytes (word)
/ﬁl&
4
v

L2%

8-32 bytes
(blotk)

*

v
) 1 to 4 blogks
Main x/lemory \O\

Secondary Memory

Inclusive (&148) -
what is in L1$ is a
subset of what is
inL2%$ isa
subset of what is
in MM that is a
subset of is in SM

1,024+ bytes (Nsk secfor = page)

(Relative) size of the memory at each level

98

The Memory Hierarchy: Why Does it Work?

»« Temporal Locality (FffEB9BFTTE, Locality in Time):
= Keep most recently accessed data items closer to the
processor

= Spatial Locality (ZREI#IEATE, Locality in Space):
= Move blocks consisting of contiguous words to the upper

levels
Lower Level
To Processor |Upper Level Memory
Memory
Block X
From Processor
Block Y

197

The Memory Hierarchy: Terminology

= Hit: data is in some block in the upper level (Block X)
= Hit Rate: the fraction of memory accesses found in the upper level

= Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss

Lower Level
To Processor |Upper Level Memory
Memory
Block X

From Processor [I:I:'] Block Y

= Miss: data is not in the upper level so needs to be retrieve
from a block in the lower level (Block Y)
= Miss Rate =1 - (Hit Rate)
= Miss Penalty: Time to replace a block in the upper level
+ Time to deliver the block the processor
= Hit Time << Miss Penalty

198

99

How is the Hierarchy Managed?

= registers <> memory

= by compiler (programmer?)
= cache <> main memory

= by the cache controller hardware
= main memory <> disks

= by the operating system (virtual memory)

= Virtual to physical address mapping assisted by the hardware (TLB,
Translation Look-aside Buffer)

= by the programmer (files)

199

Cache

= Two questions to answer (in hardware):
= Q1l: How do we know if a data item is in the cache?
= Q2: Ifitis, how do we find it?

= Direct mapped

= For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level must share locations in the upper level

= Address mapping:
(block address) modulo (# of blocks in the cache)

= First, consider block sizes of one word

200

100

Caching: A Simple First Example

Main Memory

0000xx
Cache 0001xx
. Two low order bits
IndexValid Tag Data % ggﬁx define the byte in the
00 0100xx Word (32-b words)
01 0101xx
10 0110xx
11 \ 011ixx Q2: How do we find
\ 1000xx it?
Q1: Is it there? 1001xx
1010xx Use next 2 low
Compare the cache 1011xx order memory
tag to the high order 1100xx address bits — the
2 memory address 1101xx index - to determine
bits to tell if the 1110xx which cache block
memory block is in the 111Ixx
cache (block address) modulo (# of blocks in the cache) ,q;

Direct Mapped Cache

= Consider the main memory word reference string

Start with an empty cache - all
blocks initially marked as not valid 012343415
Tag O miss 1 miss 2 miss 3 miss
00 | Mem(0) 00 | Mem(0) 00 | Mem(0) 00 | Mem(0)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2)
00 | Mem(3)
4 miss 3 hit 4 hit 15 miss
0 4
08. | Mem(%) 01 [Mem(4) 01 [Mem(4) 01 | Mem(4)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)
00 | Mem(3) 00 [Mem(3) 00 | Mem(3)/ 1100 | MemiR)

= 8 requests, 6 misses

202

101

MIPS Direct Mapped Cache Example

= One word/block, cache size = 1K words

3130 1312 11 210 Byte
| _ I _ K offset
Hit Tag ~|20 T~40 Data
Index 2
Index Valid Tag Data
0
1
2
—eep|
1021
1022
1023
=20 332
A 4
o =

What kind of locality are we taking advantage or? 203

Handling Cache Hits

Lower Level
. Upper Level Memory
= Read hits (|$ and D$) Memory
= this is what we want! Block X

= Write hits (D$ only)
= allow cache and memory to be inconsistent
= write the data only into the cache block (write-back)
= nheed a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted
= require the cache and memory to be consistent

= always write the data into both the cache block and the next level in
the memory hierarchy (write-through) so don’t need a dirty bit

= writes run at the speed of the next level in the memory hierarchy —
so slow! — or can use a write buffer, so only have to stall if the

write buffer is full

204

102

Write Buffer for Write-Through Caching

Cache
Processor DRAM

—[T—

write buffer

= Write buffer between the cache and main memory

= Processor: writes data into the cache and the write buffer

= Memory controller: writes contents of the write buffer to memory
= The write buffer is just a FIFO

= Typical number of entries: 4

= Works fine if store frequency is low
= Memory system designer’s nightmare, Write buffer

saturation (£28%0)

= One solution is to use a write-back cache; another is to use an L2

cache 205

Exercise

= Consider the main memory word reference string
= 3,2,18,3,16,2,3,18,3

Tag 3 Miss K4, FEXS,
FEEET—IBMETET)

000| Mem(3)

= 9 requests, ? misses

206

103

Another Reference String Mapping

= Consider the main memory word reference string
3,2,18,3,16,2,3,18,3

3 miss 2 miss 18 miss 3 hit
000 | Mem(2) 100 |Mem(18) 100 |Mem(18)
000 | Mem(3) 000 | Mem(3) 000| Mem(3) 000| Mem(3)
16 miss 2 miss 3 hit 18 miss
100 ([Mem(16) 100 (Mem(16) 100 |Mem(16) 100 |Mem(16)
100 | Mem(18) 000 | Mem(2) 000 | Mem(2) 100 |Mem(18)
000 Mem(3) 000 | Mem(3) 000 | Mem(3) 000 | Mem(3)
3 hit

100 (Mem(16)

100 |Mem(18)

000 | Mem(3) 207

Another Reference String Mapping

= Consider the main memory word reference string
0 404040 4

0 miss 4 miss 0 miss 4 miss
04 4 g Ot
00| Mem(0)| |06 | Mem(®) 0. | Mem(4) 06 | Mem(aY*
0 0 miss 5 O 4 miss 4 00 0 miss o1 4 miss .
0% | Mem(4) 08. | Mem(®) 0% | Mem(%) 08 | Mem(®)

= 8 requests, 8 misses

= Ping pong effect due to conflict misses - two memory
locations that map into the same cache block 208

104

Sources of Cache Misses

Compulsory (#1#1E&HB=SX, cold start or process
migration, first reference):

= First access to a block, “cold” fact of life, not a whole lot you
can do about it

= If you are going to run “millions” of instruction, compulsory
misses are insignificant

Conflict (BE& 1SR, collision):

= Multiple memory locations mapped to the same cache location
= Solution 1: increase cache size

= Solution 2: increase associativity
Capacity (BEM43R):

= Cache cannot contain all blocks accessed by the program

= Solution: increase cache size
209

Handling Cache Misses

Read misses (1$ and D$)

= stall (Ak—JL)the entire pipeline, fetch the block from the next
level in the memory hierarchy, install it in the cache and send the
requested word to the processor, then let the pipeline resume

Write misses (D$ only)

1. stall the pipeline, fetch the block from next level in the memory
hierarchy, install it in the cache, write the word from the
processor to the cache, then let the pipeline resume

or

2. Write allocate — just write the word into the cache updating
both the tag and data, no need to check for cache hit, no need to
stall

or

3. No-write allocate — skip the cache write and just write the
word to the write buffer (and eventually to the next memory
level), no need to stall if the write buffer isn’t full; must invalidate
the cache block since it will be inconsistent 210

105

MIPS Direct Mapped Cache Example

= One word/block, cache size = 1K words

3130

Byte

1312 11 - 21
offset

|

[[4

Tag ~|20

20

Index

Index Valid Tag

Data

Data

What kind of locality are we taking advantage or?

211

Multiword Block Direct Mapped Cache

= Four words/block, cache size = 1K words

Hit

Tag

3130 ...

1312 11 ... 4321

0 ~s

Byte
offset

Block offset

Data

Index

0
1
2

253
254
255

IndexValid Tag

Data

120

U

—

4

—

32

What kind of locality are we taking advantage or?

212

106

Direct Mapped Cache again!

Consider the main memory word reference string
012343415

0 miss 1 miss 2 miss 3 miss

00 | Mem(0) 00 [Mem(0) 00 | Mem(0) 00 | Mem(0)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1)

00 [Mem(2) 00 | Mem(2)

00 | Mem(3)

4 miss 3 hit 4 hit 15 miss

)8 Mem(S) 01 | Mem(4) 01 | Mem(4) 01 | Mem(4)
00 | Mem(1) 00 | Mem(1) 00 [Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2) 00 [Mem(2) 00 | Mem(2)
00 | Mem(3) 00 | Mem(3) 00 | Mem(3)/ 1100 | MemiR)

= 8 requests, 6 misses

213

Taking Advantage of Spatial Locality

s Let cache block hold more than one word
012 3 43 4 15

0 miss 1 hit 2 miss
00 |Mem(1) | Mem(Q) 00 | Mem(1) | Mem(0) 00 [Mem(1) | Mem(0)
00 [Mem(3) | Mem(2)
3 hit 01 4 miss 3hit
00 | Mem(1) [Mem(0) [6]¢] Mem(l? Mem(()‘\+ 01 | Mem(5) [Mem(4)
00 | Mem(3) [Mem(2) 00 | Mem(3) [Mem(2) 00 | Mem(3) [Mem(2)
4 hit 15miss
01 |Mem(5) | Mem(4)] 1401 | Mem(5) 1 Mem(4 A
00 |Mem(3) | Mem(2) 08. | MemQ) T Mem(2)

= 8 requests, 4 misses

214

107

S BDFELESH: Cache Summary (1)

= The Principle of Locality:

= Program likely to access a relatively small portion of the address

space at any instant of time
=« Temporal Locality: Locality in Time
= Spatial Locality: Locality in Space

= Three major categories of cache misses:
= Compulsory misses: sad facts of life. Example: cold start misses

= Conflict misses: increase cache size and/or associativity
Nightmare Scenario: ping pong effect!

= Capacity misses: increase cache size

» Cache design space
= total size, block size, associativity (replacement policy)
= write-hit policy (write-through, write-back)

= write-miss policy (write allocate, write buffers)
215

2009-06-25 20094 #5243 TOKYO TECH

W HERTETIT B 6

8. AE4:
FruLa AT LA, TOEYYIIaL—4
TH R HEIFEER

kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

108

Cache

A
H

Miss Rate vs Block Size vs Cache Size

10
o 8 KB
% -o-16 KB
B B e 64 KB
P ‘\’_././‘ —— 256 KB
—]
s

—_—
0 ; ; - ol
8 16 32 64 128 256

Block size (bytes)
Miss rate goes up if the block size becomes a significant
fraction of the cache size
because the number of blocks that can be held in the

same size cache is smaller
218

109

Block Size Tradeoff

= Larger block sizes take advantage of spatial locality but

= If the block size is too big relative to the cache size,
the miss rate will go up

= Larger block size means larger miss penalty
= Latency to first word in block + transfer time for remaining words

Mi Average
ISS . ; ; i Access
Exploits Spatial Localit Miss A
Rate P p Y Penalty Time
Increased Miss
Fewer blocks Penalty
compromises & Miss Rate
\ Temp7ra| Locality
_/
Block Size Block Size Block Size

UIn general, Average Memory Access Time

= Hit Time + Miss Penalty x Miss Rate
219

Reducing Cache Miss Rates, associativity

= Allow more flexible block placement
= In adirect mapped cache a memory block maps to exactly
one cache block

= At the other extreme, could allow a memory block to be
mapped to any cache block — fully associative cache

= A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

220

110

Caching: A Simple First Example

Cache

0000xx

0001xx

0010xx

0011xx

IndexValid Tag Data ////’
00 //

01

0100xx

10

0101xx

11

0110xx

Q1: Is it there? \

Compare the cache
tag to the high order
2 memory address
bits to tell if the

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

memory block is in the

cache

1111xx

Main Memory

Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find
it?

Use next 2 low
order memory
address bits — the
index - to determine
which cache block

(block address) modulo (# of blocks in the cache)

221

Set Associative Cache Example

Cache

Way Set V. Tag Data

0
0
1 A
0
Lt
Q: Is it there?

Compare all the cache
tags in the set to the
high order 3 memory
address bits

to tell if the memory block
is in the cache

Main Memory

0000xx

0001xx

0010xx

0011xx
0100xx
0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Two low order bits
define the byte in the
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set

222

111

Another Reference String Mapping

= Consider the main memory word reference string

Start with an empty cache - all 0 40 4040 4
blocks initially marked as not valid

0 miss 4 miss 0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 [Mem(0) 000 [Mem(0)

010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

= 8 requests, 2 misses

= Solves the ping pong effect in a direct mapped cache due to
conflict misses

223
Four-Way Set Associative Cache
= 28 = 256 sets each with four ways (each with one block)
ats0 ... 131211 ... 21/ Byteoffset
L [[4
Tag 2 T8
Index
ndex V Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
L—
25?; 25?; 25?; 25?;
254 254 254 254
255 255 255 255
| : | .32

- 4x1 select
}
Hit Data 224

112

Range of Set Associative Caches

= For a fixed size cache

Used for tag compare Selects the set Selects the word in the block
Talg | Inldex | BIockloffset |Byte |offset

. S Increasing associativity
Decreasing associativity

| Fully associative
Direct mapped ! (only one set)

(only one way) Tag is all the bits except
Smaller tags block and byte offset

225

Costs of Set Associative Caches

= N-way set associative cache costs
= N comparators (delay and area)
= MUX delay (set selection) before data is available
= Data available after set selection and Hit/Miss decision.

= When a miss occurs,

which way’s block do we pick for replacement ?
= Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

= Must have hardware to keep track of when each way’s block was
used

=« For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way’s bit)

= Random
226

113

Benefits of Set Associative Caches
= The choice of direct mapped or set associative depends on the
cost of a miss versus the cost of implementation
12 ‘
—4KB
10 A 8KB
8 \ -+ 16KB
g - 32KB
c g ——64KB
(9]
2 — 128KB
= B & % X —
4 e ——— ‘ ‘ 256K B
‘ — |=+-512KB
2 .
0 'g ¢ * * Data from Hennessy &
‘ ‘ ‘ Patterson, Computer
l-way 2-way 4-way 8-way Architecture, 2003
Associativity
= Largest gains are in going from direct mapped to 2-way 27

Reducing Cache Miss Rates by multiple levels

L2 cache L3 cache

Enough room on the die for bigger L1 caches or for a second level
of caches — normally a unified L2 cache (i.e., it holds both
instructions and data) and in some cases even a unified L3 cache

For our example,
s CPl, Of 2,
= 100 cycle miss penalty (to main memory),
= 36% load/stores,
= a2% (4%) L11$ (D$) miss rate,
= add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

=2 + .02x25 + .36X.04x25 + .005x100 +
.36x.005%x100 = 3.54
(as compared to 5.44 with no L2$)

CPI

stalls

228

114

Multilevel Cache Design Considerations

= Design considerations for L1 and L2 caches are very

different

= Primary cache should focus on minimizing hit time in support of

a shorter clock cycle

= Secondary cache should focus on reducing miss rate to reduce

the penalty of long main memory access times

= The miss penalty of the L1 cache is significantly reduced by

the presence of an L2 cache — so it can be smaller (i.e.,

faster) but have a higher miss rate

= For the L2 cache, hit time is less important than miss rate
= The L2$ hit time determines L1$'s miss penalty

229

Key Cache Design Parameters

L1 typical L2 typical
Total size (blocks) 250 to 2000 | 4000 to
250,000
Total size (KB) 16 to 64 500 to 8000
Block size (B) 32 to 64 32 t0 128
Miss penalty (clocks) 10 to 25 100 to 1000

Miss rates

2% to 5%

0.1% to 2%

230

115

; Two Machines’ Cache Parameters

Intel P4 AMD Opteron
L1 organization Split I$ and D$ Split 1$ and D$
L1 cache size 8KB for D$, 96KB for 64KB for each of 1$ and D$
trace cache (~I$)
L1 block size 64 bytes 64 bytes
L1 associativity 4-way set assoc. 2-way set assoc.
L1 replacement ~ LRU LRU
L1 write policy write-through write-back
L2 organization Unified Unified
L2 cache size 512KB 1024KB (1MB)
L2 block size 128 bytes 64 bytes
L2 associativity 8-way set assoc. 16-way set assoc.
L2 replacement ~LRU ~LRU
L2 write policy write-back write-back

231

TO0tEvHDT—RINR (T)L A45)L)

L op | rs | rt | 16 bit immediate | | format
addi $sp, $sp, 4 [addi $29, $29, 4]
PC =36
$29 = 8000

Instruction [25:21] Read

Read
address

register 1

Read
Instruction [20:16] Read data 1

Instruction
31

Instruction
memory

register 2
1ol [
Write d:f:g
Instruction [16:11] register

Read
Address "Pa0
Write
data Registers Dpata
Write memary|
data

Instruction [15:0] 6 [sign |

extend

Instruction [5:0]

116

Summary: The Cache Design Space

Cache Size

= Several interacting dimensions

= cache size

= block size

= associativity

= replacement policy

= write-through vs write-back

= write allocation Block Size
= The optimal choice is a compromise

= depends on access characteristics

= workload Bad
= l-cache, D-cache

= depends on technology / cost

Associativity

- .. . Factor Factor B
= Simplicity often wins Good
Less More
233

OPT: Optimal Replacement Policy

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

@ Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy

On a miss replace the candidate to which an access is least
imminent [Belady 1966, Mattson1970,McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing
access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead
windows to identify replacement candidates and modify current
cache state [Sugumar-SIGMETRICS1993]

OPT: HEYTHEL TLVEWELDEBEZH]AS.
MICRO-40 Emulating Optimal Replacement with a Shepherd Cache

117

Optimal Replacement Policy M1l

Understanding OPT

A 'A'A A 'A ‘A A A A ‘A A
s e T3 T gl s T sl i el T

Access Sequence

OPTMdETfOTAS’ EUE E]E 535354:

I I [1 1 1 1 1 1 1 A
owmdaforf/ﬁ P23y 4
| | [| | | | | | 1 |

@ Consider 4 way associative cache with one set initially containing lines
(A1,42.43 Af), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows

@ ldentify replacement candidates © (41,4545 44.45)

© Lookahead and gather imminence order : shown in table,
lookahead window circled

© Make replacement decision : 45 replaces 43

@ Ag self-replaces, lookahead window and imminence order in table

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache

LAR—b RERE

1. SimMipsIcT—4F vy oDy bEFRET LA FEML,
Ev FRZATEE K.
1. 4L by TAR, SAHARE4T—FET S,
2. £y r%8, 16, 32, 64, 128, 256, 512[CE&EL
=HBAEDEY FEETE.
3. LIAMER LTz sort (1000BHDS VA LT—4) EL32DF7TY
T—a EERL, TOEY FERERT &
2. FrywlaDby b RERETHIARETEEL, TOUREZTRE.
1. FlzIE, SA4 01 XDER
2. BIzIE Y bTYLT T4 TAR
3. BIAIE, INTFVYLT T4 TAR
3. LR—MIA4EMIMLLAIZEEDH BT E. (T PDFETBHILE)
(2B #8, O—KRIX/PESVWXFTEMNEDLLELY.)

118

ma DT ERIRE

» BEADFER
= 131.112.16.56
= ssh arche@131.112.16.56
« A—H4: arche
s SRT—FIIEEZBFER
= cd myname (#5l: cd 06B77777)
= cp —r /home/arche/v0.5.5 .
= cd v0.5.5
= memory.cc HEFEIELTIAV /AL, T

=
<
L] Ij': :E\ uﬁ\\

» ATEEERENGINEBICSShTEGTERLDBLAEEA.

= Windowsh (% Tera Term ZEZFIFAL TLESL.

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

LR—b R 7%

= 7TR4B (FR7TE) ETICEFA—ILTRH
» SHEIFEREEEEELFEFEA.
= report_at_arch.cs.titech.ac.jp

» BFA-ILDEANIL
= Arch Report [3#£%& 5]
= 3l : Arch Report [33_77777]

« KA, FEES

[] @%
» PDFI77AILERNM (W3 PDFETSHIL)
» PDFO7AMILICHLRA, FEESEZRATEHCL.
» AAFRFRTIMLIRIZE LD D L.

119

2009-07-02

STERT—FTIF v F— (F)

9. iR T14AY, RAID

B
kise_at_cs.titech.ac.jp

HHEIFXER

20094 R #i TOKYO TECH

W641E&E= AKEH13:20 — 14:50

Major Components of a Computer

Processor

Devices

Memory Output

o |55

2 o »

s 1127 |65 8

< o 33

x O Q

S38

<

240 P20

120

Magnetic Disk (& 7T1X%7)

Purpose
= Long term, nonvolatile ({EH %) storage >‘
= Lowest level in the memory hierarchy \ .
= slow, large, inexpensive . @
General structure AN f‘%ﬁ
= A rotating platter coated with a magnetic surface f %
= A moveable read/write head to access m% ﬂ
the information on the disk)

Typical numbers
= 1 to 4 platters per disk of 1” to 5.25” in diameter (3.5” dominate in 2004)
= Rotational speeds of 5,400 to 15,000 RPM (rotation per minute)
= 10,000 to 50,000 tracks per surface
= cylinder - all the tracks under the head at a given point on all surfaces
= 100 to 500 sectors per track

= the smallest unit that can be read/written (typically 512B)
241

Disk Drives
> Platters
™
Controller Track

+
Cache

Platter

Sector \ Tracks

——Platter f x
Head

Track

_ J

To access data: X’
= seek time (>—2B5[): position head over the proper track
= rotational latency (EI¥E#F5ERE): wait for desired sector
= transfer time (Bx%F§RE): grab the data (one or more sectors)

= Controller time (f#HB5MS) : the overhead the disk controller
imposes in performing a disk 1/0 access
242

121

Magnetic Disk Characteristic

. . Controll Track
Disk read/write components ontrofier
1. Seek time: position the head over the Cache

proper track (3 to 14 ms avg)
= due to locality of disk references
the actual average seek time may
be only 25% to 33% of the
advertised number Head
2. Rotational latency: wait for the desired sector to rotate
under the head (%2 of 1/RPM converted to ms)
= 0.5/5400RPM = 5.6ms to 0.5/15000RPM = 2.0ms
3. Transfer time: transfer a block of bits (one or more sectors)
under the head to the disk controller’s cache (30 to 80 MB/s
are typical disk transfer rates)
4. Controller time: the overhead the disk controller imposes in
performing a disk 1/0 access (typically < .2 ms)

Sector

~—Platter

243

Typical Disk Access Time

= The average time to read or write a 512B sector for a
disk rotating at 10,000RPM with average seek time of
6ms, a 50MB/sec transfer rate, and a 0.2ms controller
overhead
Avg disk read/write time
= 6.0ms + 0.5/(10000RPM/(60sec/minute))+

0.5KB/(50MB/sec) + 0.2ms
= 6.0+ 3.0+ 0.01+0.2
= 9.21ms

If the measured average seek time is 25%b of the
advertised average seek time, then

Avg disk read/write = 1.5+ 3.0+ 0.01 +0.2 = 4.71ms

= The rotational latency is usually the largest
component of the access time

244

122

Disk Latency & Bandwidth Milestones

= Disk latency is one average seek time plus the rotational latency.

= Disk bandwidth is the peak transfer time of formatted data from
the media (not from the cache).

CcbC SG ST41 | SGST15 | SG ST39 | SG ST37

Wren
Speed (RPM) 3600 5400 7200 10000 15000
Year 1983 1990 1994 1998 2003
Capacity (Gbytes) 0.03 1.4 4.3 9.1 73.4
Diameter (inches) 5.25 5.25 3.5 3.0 2.5
Interface ST-412 SCsI SCsI SCsI SCsI
Bandwidth (MB/s) 0.6 4 9 24 86
Latency (msec) 48.3 17.1 12.7 8.8 5.7

Patterson, CACM Vol 47, #10, 2004

245

Latency & Bandwidth Improvements

= In the time that the disk bandwidth doubles the

latency improves by a factor of only 1.2 to 1.4

100

80

- Bandwidth (MB/s)

— Latency (msec)

60

AN

40

AN

J

20

1983

1990

1994

1998

Year of Introduction

2003

246

123

Reliability ({S%81%) , Availability

= Reliability — measured by the mean time to failure
(s pESFdn, MTTF). Service interruption is
measured by mean time to repair (FE¥EEEFR,
MTTR)
= Availability(PRASEYT)
Availability = MTTF / (MTTF + MTTR)

= To increase MTTF, either improve the quality of the
components or design the system to continue operating
in the presence of faulty components
1 Fault avoidance: preventing fault occurrence by construction

. Fault tolerance: using redundancy to correct or bypass faulty
components (hardware)

247

RAID: Disk Arrays

Redundant Array of Inexpensive Disks

= Arrays of small and inexpensive disks

= Increase potential throughput by having many disk drives
= Data is spread over multiple disk
= Multiple accesses are made to several disks at a time

= Reliability is lower than a single disk

= But availability can be improved by adding redundant
disks (RAID)

248

124

RAID: Level O (UEM%L; Striping ARSAE)

— — — —
blk1 blk2 blk3 blk4

= Multiple smaller disks as opposed to one big disk

= Spreading the blocks over multiple disks — striping — means
that multiple blocks can be accessed in parallel increasing the
performance

= A 4 disk system gives four times the throughput of a 1 disk system
= Same cost as one b/g disk — assuming 4 small disks cost the
same as one big disk

= No redundancy, so what if one disk fails?

249

RAID: Level 1 (Redundancy via Mirroring)

Y 39 389 Ol 139 13 A

redundant (check) data

= Uses twice as many disks for redundancy
so there are always two copies of the data

= The number of redundant disks = the number of data disks
so twice the cost of one big disk

= writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID 0

= What if one disk fails?
= If a disk fails, the system just goes to the “mirror” for the data

250

125

RAID: Level O+1 (Striping with Mirroring)

s T < S < S e T [<o S - S - R a—
blk1l blk2 blk3 blk4 blk1l blk2 blk3 blk4

redundant (check) data

= Combines the best of RAID 0 and RAID 1,
data is striped across four disks and mirrored to four disks
= Four times the throughput (due to striping)

= # redundant disks = # of data disks
so twice the cost of one big disk

= writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID 0

= What if one disk fails?
= If a disk fails, the system just goes to the “mirror” for the data

251

RAID: Level 2 (Redundancy via ECC)

slol:Yol ool

252

126

RAID: Level 3 (Bit-Interleaved Parity)

blk1,b0 blk1,bl blk1,b2 blkl,b3 bit parity disk

DG | O

= Cost of higher availability is reduced to 1/N where N is the
number of disks in a protection group ({##&%')L—7)
= # redundant disks = 1 X # of protection groups

= Wwrites require writing the new data to the data disk as well as
computing the parity, meaning reading the other disks,
so that the parity disk can be updated

= reads require reading all the operational data disks as well as the
parity disk to calculate the missing data that was stored on the failed
disk

253

RAID: Level 4 (Block-Interleaved Parity)

Block parity disk

3 3 3 3

= Cost of higher availability still only 1/N but the parity is
stored as blocks associated with sets of data blocks
= Four times the throughput (striping)
= # redundant disks = 1 x # of protection groups

= Supports “small reads” and “small writes” (reads and writes that
go to just one (or a few) data disk in a protection group)

254

127

Small Writes

= RAID 3
New D1 data

-

3 reads and ® “XOR
2 writes
involving a// e R e S S——

= RAID 4 small writes
New D1 data

---/@

2 reads and

2 writes
involving just
two disks D2 D3

RAID: Level 5 (Distributed Block-Interleaved Parity)

OO Od0 O

one of these assigned as the block parity disk

= Cost of higher availability still only 1/N but the parity
block can be located on any of the disks
so there is no single bottleneck for writes
= Still four times the throughput (striping)
= # redundant disks = 1 X # of protection groups

= Supports “small reads” and “small writes” (reads and writes
that go to just one (or a few) data disk in a protection group)

= Allows multiple simultaneous writes

256

128

Distributing Parity Blocks

)
P
O
N

RAID 5

) 0]
2D)

=0 &) G
) (=)

(&0 &0 ED D)
(@ L]

|

) (0 D)
0 (D (U

5l (o))

&l (=)

) &0 GD (D)
N

N
LG

(& & Ol

|

LG GDCD LY

|
|
|

= By distributing parity blocks to all disks, some small
writes can be performed in parallel
257

Disk and RAID Summary

= Four components of disk access time:
= Seek Time: advertised to be 3 to 14 ms but lower in real systems

= Rotational Latency: 5.6 ms at 5400 RPM and 2.0 ms at 15000
RPM

= Transfer Time: 30 to 80 MB/s
= Controller Time: typically less than .2 ms
= RAIDs can be used to improve availability

= RAID 0 and RAID 5 — widely used in servers, one estimate is that
80% of disks in servers are RAIDs

= RAID 1 (mirroring) — EMC, Tandem, IBM
= RAID 3 — Storage Concepts
= RAID 4 — Network Appliance

= RAIDs have enough redundancy to allow continuous

operation
258

129

Intra-Disk Parallelism: An Ildea Whose Time Has
Come, ISCA2008

Disks Surface

=11, [5=1]

.-/ J‘ -) P n - 1
Wl e e g = .
e (] / Pl =/
Surface |_|
- o IE=1]
) T Am S
- Assemblies
;Er': _n?:: l[:f:l;:]a per Disk [A=2]
(a) A Dy Ao S, H; disk drive. (b) A D)1 AqS1 H5 disk drive.

Figure 1. Example design points within the
DASH intra-disk parallelism taxonomy.

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

2009-07-09 20094 #5243 TOKYO TECH

* STERT—FTIF v F— (F)

10. FEEEBEETF7AILAT)DEE,
ZERBELIE, itiEfRE

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

130

* SSD (Solid State Drive)

261

SSD (Solid State Drive)

262

131

Memory Hierarchy

Processor
I 4-8 bytes (word)
Increasing L1$
distance I
from the 8-32 bytes
processor in L%$ (b\é@
access time

‘ 1,024+ bytes (Nsk secjor = page)
Secondary Memory

(Relative) size of the memory at each level

263

Loading and Storing Bytes

= MIPS has two basic data transfer instructions for
accessing memory
Iw $t0, 4($s3) # load word from memory
sw $t0, 8($s3) # store word to memory
= The data is loaded into (lw) or stored from (sw) a
register in the register file

= The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

| op | rs rt | 16 bit offset

264

132

f5l:32E v D AE!) ZEfE

0x00000000

OXFFFFFFFF

00000000 00000000 00000000 000000002 = 010

111112111 1121121271 11221111 111111112 = 4,294,967,296 - 110

265

Virtual Memory ({R#8521&)

= Use main memory as a “cache” for
secondary memory

= Simplifies loading a program for execution
by providing for code relocation (i.e., the code
can be loaded anywhere in main memory)

= Provides the ability to easily run programs
larger than the size of physical memory

= Allows efficient and safe sharing of memory
among multiple programs

Main memory

266

133

Virtual Memory ({R#8521&)

= What makes it work? — again the Principle of Locality

= A program is likely to access a relatively small

portion of its address space during any period
of time

267

Virtual Memory ({R#8521&)

= Each program is compiled into its own
address space —
a “virtual” address space

= During run-time each

virtual address, VA ({RZ7KL X) must be
translated to a

physical address, PA (#)EB 7KL R)

Main memory

268

134

Two Programs Sharing Physical Memory

= A program’s address space is divided into pages (all one
fixed size) or segments (variable sizes)

= The starting location of each page (either in main memory or in
secondary memory) is contained in the program’s page table

Program 1
virtual address space
.\

2 main memory
_.

ofk—/'

.\

Program 2
virtual address space

~
o«
o

~

269

Address Translation

= A virtual address is translated to a physical address by a
combination of hardware and software

Virtual Address (VA)

31 30 NP 12 11 C 0
Virtual page number Page offset
| Physical page number Page offset |
29 L 12 11 0

Physical Address (PA)

= S0 each memory request first requires an address

translation from the virtual space to the physical space
270

135

Address Translation Mechanisms

Virtual page # Offset page _fault Z_ .
I [| page is not in physical memory

I|3hysical paq<|e # 1

|
Offset .
Physical [page Main memory
v base addr
1 o~ /
1] | /v
l *—
1] —
1 o
1] —
0 —]
1 e 7 Disk storage
0 Q\,/
1 o«
0 —

Page Table (R—<%) in main memory -

Virtual page # T Offset]

Address Translation

[Physicalpageff]

ge
Pa?eTab\e (&Jﬁi)%
. in main memory)
Virtual Address (VA)

31 30 L 12 11 S 0

i

Virtual page number | Page offset |

| Physical page number | Page offset |
29 C 12 11 0
Physical Address (PA)
s R=TUHAX[E? R=DKRODAEYHAXE? 272

136

i Virtual Addressing with a Cache

= Thus it takes an extra memory access to translate a
virtual address to a physical address

VA PA miss

CPU Tra_ns- Cache Main
lation Memory

1w 1 [

= This makes memory (cache) accesses very expensive
(if every access was really two accesses)

= The hardware fix is to use a Translation Lookaside
Buffer (TLB) — a small cache that keeps track of
recently used address mappings to avoid having to do a
page table lookup

273

i Virtual Addressing, the hardware fix

= The hardware fix is to use a Translation
Lookaside Buffer (TLB) (FRLRZE#/\vT7)

= a small cache that keeps track of recently used
address mappings to avoid having to do a page
table lookup

274

137

Making Address Translation Fast

Virtual page # Physical page
Tag base addr

\
1 o
1 o\
1 o\
0 A\ \
1 T AANAN
TLB .
Physical page Main memory
V__ base addr
1 o~
1] — — |
1 M \
1
1 o
1 o
0 .\/
I Disk storage
0 o\/
1] o«
0 .\
Page Table

(in physical memory)

275

Translation Lookaside Buffers (TLBs)

= Just like any other cache, the TLB can be organized
as fully associative, set associative, or direct mapped

V | Virtual Page # | Physical Page # |Dirty | Ref

= TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)

= TLBs are typically not more than 128 to 256 entries even on
high end machines

276

138

A TLB in the Memory Hierarchy

Yat hit Yat .
VA PA miss
CPU L TLkB Cache Main
Core OOKup Memory
miss hit
Trans-
lation
[— data

= A TLB miss —is it a page fault or merely a TLB miss?

= If the page is loaded into main memory, then the TLB miss can
be handled (in hardware or software) by loading the translation
information from the page table into the TLB

= Takes 10’s of cycles to find and load the translation info into
the TLB

= If the page is not in main memory, then it’s a true page fault
= Takes 1,000,000’s of cycles to service a page fault 277

A TLB in the Memory Hierarchy

Yot hit Yat _
VA PA miss
TLB Main
CPU Lookup Cache Memory
miss hit
Trans-
lation

L — data

= page fault : page is not in physical memory
= TLB misses are much more frequent than true page
faults

278

139

Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization

1 TLB for instructions 2 TLBs for instructions and
and 1TLB for data

Both 4-way set

2 TLBs for data
Both L1 TLBs fully

associative associative with ~LRU
Both use ~LRU replacement
replacement Both L2 TLBs are 4-way set
associative with round-robin
LRU
Both have 128 entries BOth L1 TLBs have 40
entries
Both L2 TLBs have 512
)) entries
:]'LBdmlsses handled in TBL misses handled in
ardware hardware
279
TLB Event Combinations
TLB Page | Cache |Possible? Under what circumstances?
Table
Hit Hit Hit | Yes —what we want!
Hit Hit Miss | Yes — although the page table is not
checked if the TLB hits
Miss Hit Hit |Yes—TLB miss, PA in page table
Miss Hit Miss | Yes — TLB miss, PA in page table, but data
not in cache
Miss | Miss | Miss |Yes— page fault
Hit Miss Miss/ |!mpossible — TLB translation not possible if
Hiit page is not present in memory
Miss Miss Hit |!mpossible — data not allowed in cache if
page is not in memory
780

140

Reducing Translation Time

= Can overlap the cache access with the TLB access

= Works when the high order bits of the VA are used to access
the TLB while the low order bits are used as index into cache

L_l Block offset 2-way Associative Cache
Index
VA Ta PA
g Tag Tag| Data Tag| Data
TLB Hit

Cache Hit Desired word

281

A TLB in the Memory Hierarchy

Yot hit Yat _
VA PA miss
TLB Main
CPU Lookup Cache Memory
miss hit
Trans-
lation

L — data

= page fault : page is not in physical memory
= TLB misses are much more frequent than true page
faults

282

141

Why Not a Virtually Addressed Cache?

= A virtually addressed cache would only require
address translation on cache misses

VA - PA
rans- Main
CPU lation Memory
Cache
hitr ’—[
data

but
= Two different virtual addresses can map to the same physical
address (when processes are sharing data),
= Two different cache entries hold data for the same physical
address — synonyms (B4)

= Must update all cache entries with the same physical address or the
memory becomes inconsistent 283

The Hardware/Software Boundary

= What parts of the virtual to physical address translation
is done by or assisted by the hardware?
= Translation Lookaside Buffer (TLB) that caches the
recent translations
= TLB access time is part of the cache hit time
« May cause an extra stage in the pipeline for TLB
access
= Page table storage, fault detection and updating
= Page faults result in interrupts (precise) that
are then handled by the OS

= Hardware must support (i.e., update
appropriately) Dirty and Reference bits (e.g.,
~LRU) in the Page Tables

284

142

Summary

= The Principle of Locality:
= Program likely to access a relatively small portion of the
address space at any instant of time.
=« Temporal Locality: Locality in Time
« Spatial Locality: Locality in Space
= Caches, TLBs, Virtual Memory all understood by
examining how they deal with the four questions
1. Where can block be placed?
2. How is block found?
3. What block is replaced on miss?
4. How are writes handled?

= Page tables map virtual address to physical address
= TLBs are important for fast translation
285

2009-07-16 20094 #5243 TOKYO TECH

W HERTETIT B 6

11. AHAHIE, JYAH

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

143

AVEaA—R(UN—FDIT7) DEHBNETER

aLEa—% /T \
Jotyt
A
kil
B
S TAVS H A

TotyyFREREALHRET —FERYHT ANKERT—SELREE
[CEEZAL HAREFRBEEENST —FEHAET, GIEREL. T—5/3X,
REEE. ANKE. ELTHNEEDHFEEE S HE5EES.

287

HE: RP—YY & ARI—, aAVE1—4SDEREEET

Input and Output Devices (A H%EE)

288

144

Input and Output Devices (A H%EE)

= 1/0 devices are diverse with respect to
= Behavior () — input, output or storage

= Partner (#83F) — human or machine

= Data rate (851%5:&E) — the peak rate at which data can be

transferred between the 1/0 device and the main memory or CPU

Device Behavior | Partner Data rate (Mb/s)
Keyboard input human 0.0001
Mouse input human 0.0038
Laser printer output human 3.2000
Graphics display | output human 800.0000-8000.0000
Network/LAN input or machine 100.0000-1000.0000

output
Magnetic disk storage machine 240.0000-2560.0000

abuel
apnuubew Jo siaplo g

N
©
©

A Typical 1/0 System (RFHIZAE HEE)

Processor

Interrupts

Cache

Memory = 1O Bus

Main

Memory

110 1/10 1/10
Controller || Controller Controller
Disk |Disk [Graph'csl mk

290

145

Bus, 1/0 System Interconnect

= A bus (/YX) is a shared communication link
(a single set of wires used to connect multiple subsystems)

1bit data wire

1bit control wire

291

Bus, 1/0 System Interconnect

= A bus (/YX) is a shared communication link (a single set
of wires used to connect multiple subsystems)
= Advantages
= Low cost — a single set of wires is shared in multiple ways

= Versatile (% BH#) — new devices can be added easily and
can be moved between computer systems that use the same
bus standard

= Disadvantages
= Creates a communication bottleneck — bus bandwidth limits
the maximum 1/0 throughput
= The maximum bus speed is largely limited by
= The length of the bus
= The number of devices on the bus

292

146

Bus Characteristics

Control lines: Master initiates requests

Bus _ _ Bus
Master Data lines: Data can go either way Slave

= Control lines

= Signal requests and acknowledgments

= Indicate what type of information is on the data lines
» Data lines

= Data, addresses, and complex commands

= Bus transaction consists of
= Master issuing the command (and address) — request
= Slave receiving (or sending) the data — action
= Defined by what the transaction does to memory
= Input - inputs data from the 1/0 device to the memory

= Output — outputs data from the memory to the 1/0 device 203

Types of Buses

= Processor-memory bus
= Short and high speed

= Matched to the memory system to maximize the memory-processor
bandwidth

= Optimized for cache block transfers

= 1/0 bus (industry standard, e.g., SCSI, USB, Firewire)
= Usually is lengthy and slower
= Needs to accommodate a wide range of 1/0 devices
= Connects to the processor-memory bus or backplane bus

= Backplane bus (industry standard, e.g., ATA, PClexpress)
= The backplane is an interconnection structure within the chassis

= Used as an intermediary bus connecting 1/0 busses to the
processor-memory bus

294

147

Types of Buses

Backplane bus ;
Main

Processor
Memory
1/0 devices

Processor-memory bus X
Main
Memory

Processor T T

Bus Bus
adapter adapter

1/0 bus

295
Types of Buses
Processor-memory bus ;
Main
Processor
Memory
Bus
adapter
1/0 bus
Bus
adapter
Backplane bus
Bus
adapter
296

148

Synchronous (RIEA=X) , Asynchronous (FERI#A=) Buses

Synchronous bus (e.g., processor-memory buses)

= Includes a clock in the control lines and has a fixed protocol for
communication that is relative to the clock

= Advantage: involves very little logic and can run very fast
= Disadvantages:
= Every device communicating on the bus must use same clock rate
= To avoid clock skew, they cannot be long if they are fast
Asynchronous bus (e.g., I/0 buses)

= It is not clocked, so requires a handshaking protocol and
additional control lines (ReadReq, Ack, DataRdy)

= Advantages:
= Can accommodate a wide range of devices and device speeds

= Can be lengthened without worrying about clock skew or
synchronization problems

= Disadvantage: slow
297

Asynchronous Bus Handshaking Protocol

Output (read) data from memory to an I/O device

ReadReq

Data
Ack

DataRdy

1. Memory sees ReadReq, reads addr from data lines, and raises Ack
2. 1/0 device sees Ack and releases the ReadReq and data lines
3. Memory sees ReadReq go low and drops Ack

4. When memory has data ready, it places it on data lines and raises DataRdy
5. 1/0 device sees DataRdy, reads the data from data lines, and raises Ack

6. Memory sees Ack, releases the data lines, and drops DataRdy

7. 1/0 device sees DataRdy go low and drops Ack 208

149

The Need for Bus Arbitration (Fi{%)

1bit data wire

Bus

1bit control wire

ST

1/0 devices
299

The Need for Bus Arbitration (Gi{=)

= Multiple devices may need to use the bus at the same time
= Bus arbitration schemes usually try to balance:
= Bus priority — the highest priority device should be serviced first

= Fairness — even the lowest priority device should never be completely locked
out from the bus

= Bus arbitration schemes can be divided into four classes

300

150

Daisy Chain Bus Arbitration (742 —FzA/>AR)

Bus
Arbiter

Device 1 Device 2 Device N
Highest ¢ Lowest
Priority Priority
Grant Grant Grant //
Release |
Request
® c\ g
wired-OR
S & Data/Addr)

= Advantage: simple
= Disadvantages:

= Cannot assure fairness — a low-priority device may be locked out
= Slower — the daisy chain grant signal limits the bus speed

301

Centralized Parallel Arbitration (£ ifi%|Azt)

Bus
Arbiter

Device 1 Device 2 o o o Device N
Ackl Requestl Request2 RequestN
Ack2
AckN
D Addr
S S ata/Add)

= Advantages: flexible, can assure fairness
= Disadvantages: more complicated arbiter hardware

= Used in essentially all processor-memory buses and in
high-speed 1/0 buses

302

151

The Need for Bus Arbitration (Gi{=)

Bus arbitration schemes can be divided into four classes
= Daisy chain arbitration
= Centralized, parallel arbitration
= Distributed arbitration by collision detection (2 8{EZREHAR)
= device uses the bus when its not busy and if a collision happens
(because some other device also decides to use the bus) then the
device tries again later (Ethernet)
= Distributed arbitration by self-selection (#8E B #EAX)

303

Buses in Transition

= From synchronous, parallel, wide buses to
asynchronous narrow buses
= Reflection on wires and clock skew makes it difficult to use 16
to 64 parallel wires running at a high clock rate (e.g., ~400
MHz) so companies are transitioning to buses with a few one-
way wires running at a very high “clock” rate (—~2 GHz)

PCI PClexpress | ATA Serial ATA
Total # wires 120 36 80 7
data wires 32-64 2x4 16 2x2
(2-way) (1-way) (2-way) | (1-way)
Clock (MHz) 33-133 635 50 150
Peak BW (MB/s) |128 — 1064 |300 100 375 (3 Gbps)

304

152

ATA Cable Sizes

= Serial ATA cables (red) are much thinner than
parallel ATA cables (green)

305

Bus Bandwidth Determinates

= The bandwidth of a bus is determined by

Whether its is synchronous or asynchronous and the timing
characteristics of the protocol used

The data bus width

Whether the bus supports block transfers or only word transfers

Firewire USB 2.0
Type 1/0 1/0
Data lines 4 2
Clocking Asynchronous Synchronous
Max # devices | 63 127
Max length 4.5 meters 5 meters
Peak 50 MB/s (400 Mbps) | 0.2 MB/s (low)
bandwidth 100 MB/s (800 Mbps) | 1.5 MB/s (full)

60 MB/s (high)

306

153

Example: The Pentium 4’s Buses

Memory Controller Hub ~ Fie s llss System Bus (“Front Side Bus”):
(“Northbridge”) 64b x 800 MHz (6.4GB/s), 533

- 6.4,4.2 0r 3.2 GBYs MHz, or 400 MHz
Graphics output: pomcas s

2.0 GB/s jen.
DDR SDRAM
Gbit etherpet: k| ; Main

Communication Streaming
Architecture/GbE
6 Channel
Audio

2 serial ATAs: Dual Independent

150 MB/s Serial ATA Ports I

10/100 LAN
Connect Interface

PCI:

133

Mavg 2b x 33 MHz

Hi-Speed USB 2.0
8 Ports
' 8 USBs: 60 MB/s
Intel® RAID Technology
BIOS Supports (ICHSR only)
1/0 Controller Hub HT Technology

2 parallel ATA: Legacy
ATA 100
100 MB/s

(“Southbridge™)

307
I/0 System®D FI A ELEIY A H
Processo Interruh
| _/
Cache
Main I/0 /0 /0
Memory Controller || Controller Controller
Disk | | Disk [@ mk
%8s

154

Communication of 1/0 Devices and Processor

= How the processor directs the 1/0 devices
= Memory-mapped 1/0
= Portions of the high-order memory address space
are assigned to each 1/0 device
= Read and writes to those memory addresses are
interpreted
as commands to the 1/0 devices
= Load/stores to the 1/0 address space can only be
done by the OS
= Special 1/0 instructions

309

Communication of 1/0 Devices and Processor

= How the 1/0 device communicates with the

processor
= Polling — the processor periodically checks the status
of an 1/0 device to determine its need for service
= Processor is totally in control — but does all the
work
= Can waste a lot of processor time due to speed
differences
= Interrupt-driven I/0 - the 1/0 device issues an
interrupts to the processor to indicate that it
needs attention

310

155

Interrupt-Driven Input

1. input
interrupt
[Processor | P adg
Ztr]] . user
program
2.1 save state% or
beq
Memory| |Receiver l 2.3 service
2.2 jump to___| interrupt
interrupt) B
[Keyboard] service routine sbu input
interrupt
2.4 return i service
to user code routine
memory
311
Interrupt-Driven Output
1.output
interrupt add
S| oo
program
2.1 save staﬁ ggq
N
: l 23 e
.3 service
[Memory] [Trnsmitr 22 jumpto__| errant
l interrupt) B
Display service routine bu output
S interrupt
2.4 return T ser\t/_lce
to user code routine
memory

312

156

Interrupt-Driven 1/0

An 1/0 interrupt is asynchronous
= Is not associated with any instruction so doesn’t prevent any instruction
from completing
= You can pick your own convenient point to handle the interrupt

With 1/0 interrupts
= Need a way to identify the device generating the interrupt
= Can have different urgencies (so may need to be prioritized)
Advantages of using interrupts
= No need to continuously poll for an 1/0 event; user program progress is
only suspended during the actual transfer of 1/0 data to/from user
memory space
Disadvantage — special hardware is needed to
= Cause an interrupt (1/0 device) and detect an interrupt and save the
necessary information to resume normal processing after servicing the
interrupt (processor)

313

Direct Memory Access (DMA)

For high-bandwidth devices (like disks) interrupt-
driven 1/0 would consume a /ot of processor cycles
DMA — the 1/0 controller has the ability to transfer
data directly to/from the memory without involving
the processor

There may be multiple DMA devices in one system

Processor

Interrupts

[7

| Nemory:: /O Bus |

Main 110
Memory Controller

e (—)
Disk Graphics Network

110 110
Controller Controller

314

157

Direct Memory Access (DMA) how to?

1. The processor initiates the DMA transfer by supplying

the 1/0 device address, the operation to be performed,
the memory address destination/source, the number of

bytes to transfer

2. The 1/0 DMA controller manages the entire transfer
(possibly thousand of bytes in length), arbitrating for
the bus

3. When the DMA transfer is complete, the 1/0 controller
interrupts the processor to let it know that the transfer

is complete

315

I/0 and the Operating System

= The operating system acts as the interface between the
I/0 hardware and the program requesting 1/0

= To protect the shared 1/0 resources, the user program is not
allowed to communicate directly with the 1/0 device

= Thus OS must be able to give commands to 1/0 devices,

handle interrupts generated by 1/0 devices, provide fair
access to the shared 1/0 resources, and schedule 1/0
requests to enhance system throughput

= |/0 interrupts result in a transfer of processor

control to the supervisor (OS) process | % =
ELhof05

Fhrig<icia

316

158

2009-07-23 20094 #5243 TOKYO TECH

W HERTETIT B 6

12, kT —%, TILFaAF7TOEYY

TH R IREIFEX
kise_at_cs.titech.ac.jp
W6413E&=E AKEH13:20 — 14:50

Types of Buses

Processor-memory bus :
Main
Memory

Processor

Bus
adapter

Backplane bus

1/0 bus

Bus
adapter
Bus
adapter

318

159

* rykT—2
|

319

+

Interconnection Network

© 6 o o
(a) Bus
O—0—0—0
O—O0—O0—0
O—O—0—0
O—O0—0—=0

(c) Grid, mesh

@
@
o
o
O 0 O O (b)Crossbar
T 9179)
C. T T 9
T 9T 9 +‘> (d) Torus

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

320

160

Interconnection Network Performance Metrics

= Network cost
= number of switches

= number of links on a switch to connect to the network (plus one
link to connect to the processor)

= width in bits per link, length of link

= Network bandwidth (NB)
— represents the best case
= bandwidth of each link * number of links

= Bisection bandwidth (BB)/N\f &9 32/ U Riig
— represents the worst case

= divide the machine in two parts,
each with half the nodes and
sum the bandwidth of the links that cross the dividing line

321

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Bus Network

el

network switch

Processor
node

= N processors, 1 switch (@), 1 link (the bus)

= Only 1 simultaneous transfer at a time
= NB (best case) = link (bus) bandwidth * 1
= BB (worst case) = link (bus) bandwidth * 1

322

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

161

Ring Network

070 933

= N processors, N switches, 2 links/switch, N links

= N simultaneous transfers
= NB (best case) = link bandwidth * N
= BB (worst case) = link bandwidth * 2

= If alink is as fast as a bus, the ring is only twice as fast
as a bus in the worst case, but is N times faster in the

best case
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 323
Crossbar (Xbar) Network
Q LA 2K 2k &
] e e 00
—] e e e
—{] oo 00
= N processors, N2 switches (unidirectional),
2 links/switch, N2 links
= N simultaneous transfers
= NB = link bandwidth * N
= BB = link bandwidth * N/2
324

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

162

Fully Connected Network

= N processors, N switches, N-1 links/switch,
(N*(N-1))/2 links

= N simultaneous transfers
= NB (best case) = link bandwidth * (N*(N-1))/2
= BB (worst case) = link bandwidth * (N/2)?

325

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Fat Tree

= Trees are good structures.
People in CS (Computer Science) use them all the time.
Suppose we wanted to make a tree network.

= Any time A wants to send to C, it ties up the upper links,
so that B can't send to D.
= The bisection bandwidth on a tree is horrible - 1 link, at all times

= The solution is to 'thicken' the upper links.
326

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

163

Fat Tree

A, SRR

= N processors, log(N-1)*logN switches,
2 up + 4 down = 6 links/switch, N*logN links

= N simultaneous transfers
= NB = link bandwidth * N log N
» BB = link bandwidth * 4

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 327
2D and 3D Mesh/Torus Network
SHEH]
SHEH
Mesh Torus
= N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D
torus) links/switch, 4N/2 links or 6N/2 links
= N simultaneous transfers
= NB = link bandwidth * 4N or link bandwidth * 6N
= BB = link bandwidth * 2 N¥2 or link bandwidth * 2 N2/3
328

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

164

Router Architecture Overview

‘ North Router

%x out in
4 Router

West inmwl-—* SXBARh >out | East
wite @-1-—in Router

Router out <

v
in out

South Router

329

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

Router Architecture

Router | |ARBII

Input port
North
Input port
East
— °

™ Output port North

~» Output port East

Input port

South > . —=>» Output port South
Input port 3 .

West —>» Output port West
Input port

Core » Output port Core

330

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

165

Interconnection Network Comparison

= For a 64 processor system

Bus Ring 2D 6-cube Fully
Torus connected

Network 1 64 256 192 2016
bandwidth
Bisection 1 2 16 32 1024
bandwidth
Total # of 1 64 64 64 64
switches
Links per 241 4+1 6+7 63+1
switch
Total # of 1 64+64 128+64 | 192+64 2016+64
links (bidi)

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

331

* TIILFarT7atyy
|

332

166

Processor

Datapath

Memory

Memory

Processor

Control

Datapath

= Multiprocessor — multiple processors with a single
shared address space

» Cluster — multiple computers (each with their own
address space) connected over a local area network

(LAN) functioning as a single system

333

Single Bus Multiprocessor E—/\X#E&

Procl Proc2 Proc3 Proc4
i i i i
Caches Caches Caches Caches
| Single Bus |

I

I

Memory

110

= Caches are used to reduce latency and to lower bus traffic
= Must provide hardware to ensure that caches and memory

are consistent (cache coherency)

= Must provide a hardware mechanism to support process
synchronization

334

167

i RYRI—H#EESDTILFIOyY

Procl Proc2 Proc3 Proc4
i i i i
Caches Caches Caches Caches
Memory Memory Memory Memory

I

|

I

|

Network

335

i TokyoTech TSUBAME

168

TokyoTech TSUBAME

337

TokyoTech TSUBAME

338

169

TSUBAME #¥EL A7k

= 7

7 T TSUBAME BEL 79k
o IHEBSH (600m2), HEEH
350m? ($—E AT)

76 Z9% (FH/—K, 2yt
=4, AR 463

- M0 RkLwirsyd

R RFE1I= ok 122 b
£ 585 hy (BLOZAS
0%)
BREEE M 2AHDwhigE
. WEMM=ER

e

339
TokyoTech TSUBAME
=100
| 70D BEED BTN BREADE v-AD AMIH ar
Q- Q- x) 2], ww crmma @) " [PHAR [e =] 180
4 ROgRR¥rE ? EETARE :
&> SuparCom2006
NEWS w [Baci iumper) OEESE
iy e bt
- 340

170

Fy T ILF 7Oty 5 Dbl
Cell Broadband Engine

341

i Cell Broadband Engine & PS3

PLAYSTATION 3 fER E(HRT — LiraD2005) 1 —37al) &3

342

171

i Cell BE Element Interconnect Bus
N T

BIF Broadband interface
10IF VO interface

Figure 2. Element interconnect bus (EIB).

B

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed343

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

i SPE (Synergistic Processor Element)

1t it
b o e s o |

r = L
ﬁ R 3 o) 3 CHE -
. = Beahd N i
1 m—m i e e
Y- 1

344

172

i Cell/lB.E. DE—4 1% 8E

» I YAYLTIHEMERE1RIRTTELERS
(2 FLOP/cycle)

= SIMDIERL T, SPEHTI-YNDIFIE 4
s FYTRDSPEN%# 8
« BMERIKRER 4GHZ

s 2 X 4 X 8x4 =256 GFLOPS
s (RUT47LIE 8GFLOPS F2E)

345

i G525

SPE SPE ST}E SPE SPE Code
Source Compiler ™ Object Linker —‘_’ Embedder
SPE PPE '

Executable T Object
’—[sps L.
Source Object \
PPE Linker
SPE Data
Libraries —_—

PPE
Libraries
PPE , — PPE
Source Object

Figure 2
Manually compiling and binding a Cell BE program

PPE PPE |, PPE SPE I
Source Compiler " Object — Executable

346

173

YA Gl 735 -2 K |

£ ¢

Original 1 +Bundle +Branch Hint I +fetch

Figure 11
Reduction in program execution time with optimizations

3 R > £
SRR G & # &‘%f“

347

8EMSPUIZ LA FIzhE

w

L8] w -

Speedup over one SPU

— — —&— wupwise

Mgrid

—— Swim
3~ equake

—h— applu

—¢— apsi

—— art

E—ammp

Figure 13
Speedup resulting from parallelization

348

174

Cell/B.E. £&8

s 256GFLOPSELVIELE—IHERE
=« SPE

« FrulafL, HIETRIEL

s A=A YRDBIE

= SIMDilli 5|1k, DMA#R%E
8EMNSPEZFIAL-AFIE

w 7RI SHI

= SNILDT

» ARL—TFTAVTVRT L
s OVINATEAT

349

HRIOTIoOTOtyY

1971 5F: 4004 7200044

oty HEFE FSUOREH
4004 1971 2,250

L ot

Hig: 2V —BRWHR[I FRF T (Wikipedia)], IntelSa—CFLA
350

175

AZ—AT7ADFEN, L—T DEE

PA=R s

4004

8008

8080

8086

286

386™ processor
486™ DX processor
Pentium® processor
Pentium 11 processor
Pentium 111 processor
Pentium 4 processor

HEE FSUDREH

1971
1972
1974
1978
1982
1985
1989
1993
1997
1999
2000

transistors

Pentium® 4 Processor 100,000,000

Pentium® Il Processor

MOQORE'S LAW
Pantium® | Processor 10,000,000
Pentium? Processor
486™ DX Processor,
& 1 1,000,000
386™ Processor 4
286 o
2,250 - # 4 100,000
2,500 8086 & e 1
5,000 4 LTS
29,000 S Q{ S 10,000
120,000 8008 = A AN
275000 40044 N oo
1,180,000 o . B L i
3100000 1970 1975 1980 1985 1990 1995 2000
7,500,000
24,000,000
42,000,000

H#8: Intelft, http://www.intel.com/research/silicon/mooreslaw.htm

351

Moore’s Law

176

TILFAT (~10ERRE) hdA=—aT7 ()~

Processor EV4 EVS EVad EVS-
Issue-widch 2 4 & (000) 8 (000)
I-Cache 8KB,DM | SKB. DM 64KB, 2-way 64KB, 4-way
D-Cache BKB.DM | 8KB.DM | 64KB, 2-way 64KB, 4-way
Branch Pred. 2KB,1-bit | 2K-gshare | hybrid 2-level | hybrid 2-level (2X EV6 size)
Number of MSHRs 2 4 8 16
Table 1. Configuration of the cores
RO EVE EVE EVE
RISCTOty4DH (X
EWa
EVE- EV6 EV6 EV6
EVS
EVE EV6 EV6 EV6

Figure 1. Relative sizes of the cores used in

the study

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

353

TILFAT (~10ERE) hdA=Z—aT7 ()~

Many-core Era
Massively parallel
applications
1004
Increasing HW
Threads
Per Socket

Multi-core Era

Scalar and
parallel applications

T T
2003 2005 2007 2009 2m 2013

Figure 1

Current and expected eras of Intel® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade 354

177

Feature-Packing7 —%7 0 F ¥

» BEOAZ—OTH—GATDEE)

LTLTLTLTLTLTLTLT
LTLTLTLTLTLTLTLT
LTLTLTLTLTLTLTLT

LTLTLTLTLTLTLTLT
LTLTLTLTLTLTLTLT

s Feature-Packing7 —F TV FvEEALT-A=—O7 ®

LL L TLTL 7L 7L L7
LTLTLTLTLTLTLTL T, @
LTLTLTL L TLTLTL 7
L TL L TLTLTL L TL 7, ’::>
LTL 7L TLTL 7L TLTL T Yavd W/

LTLTL 7L TLTL LT T Lz @ LTL 7

/7 SEa7(FIT—arET)

(7 mEHiEXEI7 /7 TABEXEaT o5
3

LR—bk R A&

= 84118 (F#&5E) FTICEFA—/LTRHE
= report@arch.cs.titech.ac.jp
s LIR—FDFEFMIEHR—LR—DFSR
n BFA—ILDIARIL
= Computer Architecture Report
= BEFA-ILOAR
- K&, ZHES
= B
= PDFO7ALZ R

356

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

178

$F£I$4E

4%331 u‘l’g*g‘é

. ﬁ%ﬁ#ﬁﬁﬁﬁﬁk@“éj’nt/ﬁ&%ofﬁuﬁﬂ%m:ﬁ?lb, BB EETORE
EETD BIC, LYRENSVRIFEBREAVCHERONRB %
L, EEGHEROREETS.

« 52 HERT—FTIOFVE—

= CPUZEH, AEY, FrRr/L, A7, BIEHMH FOHEHRATLE

BT HEBEBICONT, TO&RE, BIERBIZSOVTHERT 5.

w 6FH: HHEET—FTIOFYEZ
» BFOHE#MRATLAICRYANLONTWSEETAEyHHIHAR, #
BARIZDOVWTHRR, ShSDEMERELIz/ A 1TS1>TntyYy,
A—/RavEa1—4, BHFIFER, T—270—5E#, SO kinmig
T—XTFIFvIZDONTHEET .
w SHEHT—XTOFvIFR(KFR)

357

179

