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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
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関連科目・履修条件等

４学期： 計算機論理設計
計算機を構成するプロセッサとその制御部に関し，具体構成と設計の原理
を講義する．特に，レジスタトランスファ言語を用いて計算機の内部動作を

記述し，簡単な計算機の設計を行う．

５学期： 計算機アーキテクチャ第一
CPU を含め，メモリ，チャネル，入出力，通信制御，等の計算機システムを

構成する各種装置について，その役割，動作原理について講義する．

６学期： 計算機アーキテクチャ第二
最新の計算機システムに採り入れられている高速プロセッサ制御方式，構
成方式について述べ、これらの技術を駆使したパイプラインプロセッサ，
スーパコンピュータ，超並列計算機，データフロー計算機，等の先端的な
アーキテクチャについて講義する．

計算機アーキテクチャ特論（大学院）
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2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

計算機システムの基本構成
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計算機（デスクトップコンピュータ）

ディスプレイ
（モニタ）

コンピュータ

CPU

6

マイクロプロセッサ，CPU
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メモリ
DRAM (dynamic random access memory)

8

ディスク，磁気ディスク
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グラフィックカード

10

ネットワークカード
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マザーボード

12

など
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計算機

14

補足： クラスタ型（並列）計算機
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計算機アーキテクチャとは？

アーキテクチャ
Architecture

計算機アーキテクチャ
Computer Architecture

16

アーキテクチャ（建築）
Architecture

世界最大のクフ王のピラミッド
1個約2.5tのブロックを 230～250万 個
積み重ねて造られている。

写真は計算機アーキテクチャのホームページから http://www.cs.wisc.edu/arch/www/

パルテノン神殿
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計算機アーキテクチャ
Computer Architecture

18

計算機アーキテクチャ

What's Computer Architecture?

Computer Architecture is the science and art 
of selecting and interconnecting hardware 
components to create computers that meet 
functional, performance and cost goals. 
Computer architecture is not about using 
computers to design buildings.

計算機アーキテクチャのホームページから http://www.cs.wisc.edu/arch/www/
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計算機

20

計算機アーキテクチャ，ブロック図
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計算機アーキテクチャへの要求

速度

消費電力

発熱

音

価格

安定性，信頼性



12

23

増加を続けるプロセッサのエネルギー消費

出典： Gelsinger’s Slide from ISSCC 2001

このままでは，プロセッサの熱は核反応，ロケットの噴射口，太陽の表面の
エネルギー消費に近づいていく．

24

人類にとって重要な問題 グランドチャレンジ

出典： David E. Culler, Jaswinder Pal Singh, Parallel Computer Architecture (p.7)

科学や工学の分野における重要問題で，
現在のコンピュータでは計算が困難な問題

現在の高性能パソコン
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スーパーコンピュータのダウンサイジング

Titech Titech 
TSUBAMETSUBAME

~80+ racks~80+ racks
350m2 floor area350m2 floor area
1.2 MW (peak)1.2 MW (peak)
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先端マイクロプロセッサ Intel Core 2 Duo

(2006年7月発表)
65nmプロセス

143mm2

291M トランジスタ

65W

Core Micro Architecture
Intelligent power capability
Micro-Fusion

RISC vs CISC

Advanced Smart Cache

Intel Developer Forum
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先端マイクロプロセッサ Intel Montecito

２個のEPICプロセッサコア

1MB L2, 12MB L2キャッ
シュ

EPICコアは11 issue, 2way 
Temporal MT
初の10億超トランジスタ

1.72BTrs
21.5mm x 27.7mm
90nm
100W

パワー制御用の専用チップ
Foxtonを搭載 Source: ISSCC 2005 papers

28

先端マイクロプロセッサ
Cell Broadband Engine

ヘテロジニアス チップマルチプロセッサ
PowerPC Processor Element (PPE) １個

Synergistic Processor Element (SPE) ８個

Diagram created by IBM to promote the CBEP, ©2005 
WIKIPEDIAより
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先端マイクロプロセッサ SUN Rock

Source: ISSCC 2008 papers

A Third-Generation 65nm 16-Core 32-Thread Plus 32-
Scout-Thread CMT SPARC® Processor

30

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

計算機システムの動作原理
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コンピュータ（ハードウェア）の古典的な要素

出典： パターソン ＆ ヘネシー、 コンピュータの構成と設計

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

プロセッサは記憶装置から命令とデータを取り出す。入力装置はデータを記憶装置
に書き込む。出力装置は記憶装置からデータを読みだす。制御装置は、データパス、
記憶装置、入力装置、そして出力装置の動作を指定する信号を送る。

32

高水準言語からハードウェアの言語へ

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

0  1   2  . . .  

k

v

swap

C言語で記述したプログラム

データ
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高水準言語からハードウェアの言語へ

swap:

muli $2, $5,4

add  $2, $4,$2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

0  1   2  . . .  

$2

v

swap

MIPSのアセンブリ言語に変換されたプログラム

$4 + 0

$4 + 4

$5

$15

$16

34

高水準言語からハードウェアの言語へ

swap:
muli $2, $5,4
add  $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

MIPSのアセンブリ言語に
変換されたプログラム

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

C言語で記述したプログラム

Cコンパイラ

アセンブラ

機械語に落とされたプログラム（機械命令の集まり）



18

35

プログラム，データ，その他

記憶
（メモリ）

記憶
（メモリ）

プログラム

データ

スタック

プロセッサ

36

コンピュータ（ハードウェア）の古典的な要素

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

インタフェース

コンパイラ

性能の評価
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講義項目

計算機システムの基本構成と動作原理

データ形式，命令形式，アドレス指定形式

メモリ１：半導体メモリシステム，ファイルメモリシステム

メモリ２：記憶階層，キャッシュシステム

メモリ３：仮想記憶システム（セグメンテーション，ページング，等）

メモリ４：主記憶とファイルメモリの管理，多重仮想記憶，記憶保護

割り込み１：割り込みの必要性，割り込みの種類

割り込み２：割り込み処理の流れ

入出力制御１：チャネル，チャネルプログラム方式

入出力制御２：入出力動作の流れ，チャネル動作の効率化

入出力制御３：チャネルの種類，通信制御

レポートと期末試験により評価、今年度はちょっと修正

38

参考書

コンピュータの構成と設計 第３版、
パターソン＆ヘネシー（成田光彰
訳）、 日経ＢＰ社、2006
コンピュータアーキテクチャ 定量的アプローチ 第4版
翔泳社, 2008
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989 
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988 
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995 
計算機アーキテクチャ，

橋本 昭洋 著，昭晃堂，1995
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参考書

コンピュータの構成と設計 第３版、
パターソン＆ヘネシー（成田光彰
訳）、 日経ＢＰ社、2006
コンピュータアーキテクチャ 定量的アプローチ 第4版
翔泳社, 2008
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989 
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988 
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995 
計算機アーキテクチャ，

橋本 昭洋 著，昭晃堂，1995
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レポート 問題

1. 部品を組み合わせて計算機（パソコン）を自作したい．

適切な（個人の主観でかまわない）部品と構成を提案せ

よ．

提案構成できちんと動作することを説明せよ．

また，構成の特徴を魅力的に説明せよ．

1. 予算は５万円以内とする．

それぞれの部品の価格をＷｅｂにて調査すること．

2. オペレーティングシステムとして Linux が動作すること．

利用目的とその意義を明確にすること．

3. 計算機本体のみとする．ディスプレイやキーボードは不要．

4. レポートはＡ４用紙 ２枚以内にまとめること．
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レポート 提出方法

４月２７日（午後１１時）までに電子メールで提出
人よりも先に提出している（先願性）と高得点

斬新または魅力的な計算機構成であれば高得点

report_at_arch.cs.titech.ac.jp ( _at_ を @ に置き換える )

電子メールのタイトル
ArchReport [学籍番号]

電子メールの内容
氏名，学籍番号

回答

テキスト形式，あるいはＰＤＦファイルを添付

Ａ４用紙で２枚以内にまとめること．

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

２．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-04-30
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第１回 レポートの提出状況
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参考書（読んでください）

コンピュータの構成と設計 第３版、パター
ソン＆ヘネシー（成田光彰 訳）、 日経ＢＰ
社、2006
コンピュータアーキテクチャ 定量的アプローチ 第4版
翔泳社, 2008
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989 
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988 
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995 
計算機アーキテクチャ，

橋本 昭洋 著，昭晃堂，1995
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参考書（大学院生がターゲット，興味があれば）

コンピュータの構成と設計 第３版、
パターソン＆ヘネシー（成田光彰 訳）、
日経ＢＰ社、2006
コンピュータアーキテクチャ 定量的アプローチ 第4版
翔泳社, 2008
コンピュータアーキテクチャ，
村岡 洋一 著， 近代科学社，1989 
計算機システム工学，
富田 真治，村上 和彰 著，昭晃堂，1988 
コンピュータハードウヱア，
富田 真治，中島 浩 著，昭晃堂，1995 
計算機アーキテクチャ，

橋本 昭洋 著，昭晃堂，1995
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参考書（アセンブラに興味があれば）

MIPSのアセンブラがよくわかります．面白いです． MIPSとLinuxの間がわかります．お勧め．
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ただしい講義の受け方？

どんどん質問する！ ＞＞ 活発な講義！

難しい！

わからない時は ．．．

わからない顔をする！

不満のある時は．．．

不満のある顔をする！

わかった時は．．．

うなずく！

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

２．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０
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コンピュータ（ハードウェア）の古典的な要素

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

インタフェース

コンパイラ

性能の評価

命令セットアーキテクチャ

50
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Instruction Set Architecture (ISA) Type Sales
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Where is the Market?

290

93
3

488

114
3

892

135
4

862

129
4

1122

131
5

0

200

400

600

800

1000

1200

1998 1999 2000 2001 2002

Embedded
Desktop
Servers

M
ill

io
ns

 o
f C

om
pu

te
rs

52
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

RISC - Reduced Instruction Set Computer

RISC philosophy
fixed instruction lengths
load-store instruction sets
limited addressing modes
limited operations

Sun SPARC, HP PA-RISC, IBM PowerPC, 
Compaq Alpha, MIPS, …

Design goals:  speed, cost (design, fabrication, test, 
packaging), size, power consumption, reliability, 
memory space (embedded systems)

CISC
Complex Instruction Set Computer
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

MIPS R3000 Instruction Set Architecture (ISA)

Instruction Categories
Computational 
Load / Store
Jump and Branch
Floating Point

coprocessor

Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

54
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Aside:  MIPS Register Convention

n.a.reserved for assembler1$at

yesreturn addr (hardware)31$ra

yesframe pointer30$fp

yesstack pointer29$sp

yesglobal pointer28$gp

notemporaries24-25$t8 - $t9

yessaved values16-23$s0 - $s7

notemporaries8-15$t0 - $t7

yesarguments4-7$a0 - $a3

noreturned values2-3$v0 - $v1

n.a.constant 0 (hardware)0$zero

Preserve 
on call?

UsageRegister 
Number

Name
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies 
exactly three operands

destination  ← source1    op source2

Those operands are contained in the datapath’s
register file ($t0,$s1,$s2) – indicated by $
Operand order is fixed (destination first)

56
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies 
exactly three operands

destination  ← source1    op source2

Each arithmetic instruction performs only one
operation
Each arithmetic instruction fits in 32 bits and specifies 
exactly three operands

destination  ← source1    op source2

Operand order is fixed (destination first)
Those operands are contained in the 
register file ($t0,$s1,$s2) – indicated by $
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Instructions, like registers and words of data, 
are 32 bits long
Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op           rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

58
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

Machine format (I format):

MIPS Immediate Instructions

op           rs rt 16 bit immediate I  format

Small constants are used often in typical code
Possible approaches?

put “typical constants” in memory and load them 
create hard-wired registers (like $zero) for constants like 1
have special instructions that contain constants !

The constant is kept inside the instruction itself!
Immediate format limits values to the range +215–1 to -215
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

演習

f = ( g + h ) – ( i + j )

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4 
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリ

ケーション・コードはどうなるか．

60
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

演習 （参考書 48ページ）

f = ( g + h ) – ( i + j )

f, g, h, i, j をそれぞれレジスタ $s0, $s1, $s2, $s3, $s4 
に割り付けるとする．

上のステートメントをコンパイルした結果のMIPSアプリ

ケーション・コードはどうなるか．

add $t0, $s1, $s2 # $t0 = ( g + h)
add $t1, $s3, $s4 #
sub $s0, $t0, $t1 #
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61
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

MIPS Memory Access Instructions

MIPS has two basic data transfer instructions for 
accessing memory
lw $t0, 4($s3)  # load word from memory

sw $t0, 8($s3)  # store word to memory

The data is loaded into (lw) or stored from (sw) a 
register in the register file
The memory address – a 32 bit address – is formed by 
adding the contents of the base address register to the 
offset value

A 16-bit field is limited to memory locations within a region of 
±213 or 8,192 words (±215 or 32,768 bytes) of the address in the 
base register

62
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Load / Store Instruction Format (I format):
lw $t0, 24($s2)

Machine Language - Load Instruction

op            rs rt 16 bit offset

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0 
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63
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

演習

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

64
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

演習 （参考書 50ページ）

g = h + A[8]
100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $s1, $s2, $t0 # g = h + $t0
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演習

A[12] = h + A[8] 

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

66
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

演習 （参考書 51ページ）

A[12] = h + A[8] 

100語から成る配列Aがあるとする．また，コンパイラは変

数g, h にレジスタ $s1, $s2 を割り付ける．さらに配列の

開始アドレスは $s3 に納められているとする．

上のステートメントをコンパイルせよ．

lw $t0, 32($s3) # $t0 = A[8]
add $t0, $s2, $t0 # $t0 = h + $t0
sw $t0, 48($s3) # A[12] = $t0
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MIPS conditional branch instructions:
bne $s0, $s1, Lbl #go to Lbl if $s0≠$s1 
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

Instruction Format (I format):

op            rs rt 16 bit offset

How is the branch destination address specified?

68
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset
which register?  Instruction Address Register  (the PC)

its use is automatically implied by instruction
PC gets updated (PC+4) during the fetch cycle so that it holds the 
address of the next instruction

limits the branch distance to -215 to +215-1 instructions from the 
(instruction after the) branch instruction, but most branches are 
local anyway

PC
Add

32

32 32
32

32

offset
16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32
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We have  beq, bne, but what about other kinds of 
brances (e.g., branch-if-less-than)?  For this, we need 
yet another instruction, slt

Set on less than instruction:
slt $t0, $s0, $s1 # if $s0 < $s1 then

# $t0 = 1 else 
# $t0 = 0

Instruction format (R format):

More Branch Instructions

op            rs rt rd                        funct

70
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

More Branch Instructions, Con’t

Can use slt, beq, bne, and the fixed value of 0 in 
register $zero to create other conditions

less than  blt $s1, $s2, Label

less than or equal to ble $s1, $s2, Label

greater than  bgt $s1, $s2, Label

great than or equal to  bge $s1, $s2, Label

slt $at, $s1, $s2 # $at set to 1 if
bne $at, $zero, Label #  $s1 < $s2

Such branches are included in the instruction set as 
pseudo instructions - recognized (and expanded) by the 
assembler

Its why the assembler needs a reserved register ($at)
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MIPS also has an unconditional branch instruction or 
jump instruction:

j  label #go to label

Other Control Flow Instructions

Instruction Format (J Format):

op                                  26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

72
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

演習 （参考書 64ページ）

f, g, h, i, j は変数である．それぞれを $s0 から $s4に

割り付ける．このコードをコンパイルした結果を示せ．

if (i == j)  f = g + h;  else f = g – h;
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演習 （参考書 64ページ）

f, g, h, i, j は変数である．それぞれを $s0 から $s4に

割り付ける．このコードをコンパイルした結果を示せ．

if (i == j)  f = g + h;  else f = g – h;

bne $s3, $s4, Else # if (i!=j) goto Else
add $s0, $s1, $s2 # f = g + h
j Exit # goto Exit

Else:
sub $s0, $s1, $s2 # f = g - h

Exit:

74
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

演習

ループを利用して１から１００までの合計値を求めるア

センブラを示せ．

氏名，学籍番号，
学籍番号マーク欄(右詰で)
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演習

add  $t0, $zero, $zero  # i = 0;

addi $t1, $zero, 101    # i_end = 101;

add  $t2, $zero, $zero  # sum = 0;

Loop:

add  $t2, $t2, $t0      # sum = sum + i;

addi $t0, $t0, 1        # i = i + 1;

bne $t0, $1, Loop      # goto Loop if i != i_end

76
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Aside:  Branching Far Away

What if the branch destination is further away than 
can be captured in 16 bits?

The assembler comes to the rescue – it inserts an 
unconditional jump to the branch target and inverts the 
condition

beq $s0, $s1, L1

becomes
bne $s0, $s1, L2
j L1

L2:
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MIPS procedure call instruction:
jal Procedure-Address #jump and link

Saves PC+4 in register $ra to have a link to the next 
instruction for the procedure return
Machine format (J format):

Then can do procedure return with a
jr $ra #return

Instruction format (R format):

Instructions for Accessing Procedures

op                       26 bit address

op            rs funct

78
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

We'd also like to be able to load a 32 bit constant into a 
register, for this we must use two instructions
a new "load upper immediate" instruction

lui $t0, 1010101010101010

Then must get the lower order bits right, use                  
ori $t0, $t0, 1010101010101010

Aside:  How About Larger Constants?

16             0           8           1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010               1010101010101010
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MIPS ISA So Far

$s1 = $s2 v 6ori $s1, $s2, 613or immediate

if ($s2<6) $s1=1 else                      
$s1=0

slti $s1, $s2, 610set on less than 
immediate

$s1 = 6 * 216lui $s1, 615load upper imm

$s1 = $s2 + 6addi $s1, $s2, 68add immediate

go to 10000; $ra=PC+4jal 25003jump and link

go to $t1jr $t10 and 8jump register

go to 10000j       25002jumpUncond. 
Jump      (J & 
R format)

if ($s2<$s3) $s1=1 else                      
$s1=0

slt $s1, $s2, $s30 and 42 set on less than

if ($s1 !=$s2) go to Lbne $s1, $s2, L5br on not equal

if ($s1==$s2) go to Lbeq $s1, $s2, L   4br on equalCond. Branch    
(I & R 
format)

Memory($s2+25) = $s1sb $s1, 25($s2)40store byte

$s1 = Memory($s2+25)lb     $s1, 25($s2)32load byte

43

35

0 and 34

0 and 32

Op Code

Memory($s2+24) = $s1sw $s1, 24($s2)store word

$s1 = Memory($s2+24)lw $s1, 24($s2)load wordData Transfer
(I format)

$s1 = $s2 - $s3sub  $s1, $s2, $s3subtract

$s1 = $s2 + $s3add  $s1, $s2, $s3addArithmetic
(R & I 
format)

MeaningExampleInstrCategory

80
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今日のまとめ, MIPS R3000 ISA

Instruction Categories
Computational 
Load / Store
Jump and Branch
Floating Point
Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt Immediate (16bit)

jump target (26bit)

3 Instruction Formats: all 32 bits wide

R format

I format

J format
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We'd also like to be able to load a 32 bit constant into a 
register, for this we must use two instructions
a new "load upper immediate" instruction

lui $t0, 1010101010101010

Then must get the lower order bits right, use                  
ori $t0, $t0, 1010101010101010

Aside:  How About Larger Constants?

16             0           8           1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010               1010101010101010

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

MIPS ISA So Far

$s1 = $s2 v 6ori $s1, $s2, 613or immediate

if ($s2<6) $s1=1 else                      
$s1=0

slti $s1, $s2, 610set on less than 
immediate

$s1 = 6 * 216lui $s1, 615load upper imm

$s1 = $s2 + 6addi $s1, $s2, 68add immediate

go to 10000; $ra=PC+4jal 25003jump and link

go to $t1jr $t10 and 8jump register

go to 10000j       25002jumpUncond. 
Jump      (J & 
R format)

if ($s2<$s3) $s1=1 else                      
$s1=0

slt $s1, $s2, $s30 and 42 set on less than

if ($s1 !=$s2) go to Lbne $s1, $s2, L5br on not equal

if ($s1==$s2) go to Lbeq $s1, $s2, L   4br on equalCond. Branch    
(I & R 
format)

Memory($s2+25) = $s1sb $s1, 25($s2)40store byte

$s1 = Memory($s2+25)lb     $s1, 25($s2)32load byte

43

35

0 and 34

0 and 32

Op Code

Memory($s2+24) = $s1sw $s1, 24($s2)store word

$s1 = Memory($s2+24)lw $s1, 24($s2)load wordData Transfer
(I format)

$s1 = $s2 - $s3sub  $s1, $s2, $s3subtract

$s1 = $s2 + $s3add  $s1, $s2, $s3addArithmetic
(R & I 
format)

MeaningExampleInstrCategory
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Aside: Loading and Storing Bytes

MIPS provides special instructions to move bytes
lb $t0, 1($s3)  #load byte from memory

sb $t0, 6($s3)  #store byte to  memory 

op            rs rt 16 bit offset

What 8 bits get loaded and stored?
load byte places the byte from memory in the rightmost 8 bits of
the destination register

what happens to the other bits in the register?

store byte takes the byte from the rightmost 8 bits of a register 
and writes it to a byte in memory

what happens to the other bits in the memory word?

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Byte Addresses

Since 8-bit bytes are so useful, most architectures 
address individual bytes in memory

The memory address of a word must be a multiple of 4 
(alignment restriction)

Big Endian:
leftmost byte is word address 
IBM 360/370, Motorola 68k, MIPS, SPARC, HP PA

Little Endian:
rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3          2          1           0

little endian byte 0

0          1          2           3
big endian byte 0
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Aside:  Spilling Registers

What if the callee needs more registers?  What if the 
procedure is recursive?

uses a stack – a last-in-first-out queue – in memory for 
passing additional values or saving (recursive) return 
address(es)

One of the general registers, 
$sp, is used to address the 
stack (which “grows” from high 
address to low address)

add data onto the stack – push
$sp = $sp – 4
data on stack at new $sp

remove data from the stack – pop
data from stack at $sp 
$sp = $sp + 4

low addr

high addr

$sptop of stack

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

MIPS R3000 ISA

Instruction Categories
Computational 
Load / Store
Jump and Branch
Floating Point
Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt Immediate (16bit)

jump target (26bit)

3 Instruction Formats: all 32 bits wide

R format

I format

J format
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

演習

アセンブラを示せ．
氏名，学籍番号，
学籍番号マーク欄(右詰で)

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
92

Exercise 1

swap:

add $t1, $a1, $a1  #      

add $t1, $t1, $t1  # $t1 = k * 4;

add $t1, $a0, $t1  # $t1 = &v[k];

lw $t0, 0($t1)    # $t0 = v[k];

lw $t2, 4($t1)    # $t2 = v[k+1];

sw $t0, 4($t1)    # v[k+1] = $t0;

sw $t2, 0($t1)    # v[k]   = $t2;

jr $ra # return

sll (shift left logical) $t1, $a1, 2
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
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Exercise 2

void max (int v[], int n)

{

int I;

for (i = 1; i < n; i +=1){

if (v[i-1] > v[i]) swap(v,i-1);

}

}

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
94

Exercise 3

void sort (int v[], int n)

{

int i, j;

for (i = 0; i < n; i +=1){

for (j=i-1; j>=0 && v[j]>v[j+1]; j-=1) swap(v,j);

}

}
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講義用の計算機環境

講義用の計算機

131.112.16.56 
ssh arche@131.112.16.56

ユーザ名: arche
パスワードは講義時に連絡

mkdir myname (例: mkidr 06B77777)
cd myname (例: cd 06B77777)

注意点

計算機演習室からは外部にsshで接続できないかもしれません．

Windowsからは Tera Term などを利用してください．

96
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Sample program

#include <stdio.h>
int main(){

int i;
int sum = 0;

for(i=1; i<=100; i++)  sum += i;

return sum;
}

mipsel-linux-gcc -O0 -S main.c -o main_opt0.s
/home/share/cad/mipsel/usr/bin/mipsel-linux-gcc

コンパイラの最適化オプションを変更しながら，
どのような命令列が出力されるか試してみる．
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Sample program

#include <stdio.h>
int main(){

int i;
int sum = 0;

for(i=1; i<=100; i++)
sum += i;

return sum;
}

mipsel-linux-gcc -O0 -S main.c -o main_opt0.s

98
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Sample program

#include <stdio.h>

int main(){
int i;
int sum = 0;

for(i=1; i<=100; i++)
sum += i;

return sum;
}

mipsel-linux-objdump -d ./a.out
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Sample program

# Makefile
all:

mipsel-linux-gcc -O0 -S main.c -o main_opt0.s
mipsel-linux-gcc -O1 -S main.c -o main_opt1.s
mipsel-linux-gcc -O2 -S main.c -o main_opt2.s
mipsel-linux-gcc -O3 -S main.c -o main_opt3.s

遅延分岐に注意

レポート 問題

1. void max (int v[], int n)

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプ

ションによってどのように変化するかをまとめよ．

2. void sort (int v[], int n)

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプ

ションによってどのように変化するかをまとめよ．

3. 同様に，サンプルアプリケーションを作成し，それをクロスコンパイラに

てMIPS命令セットにコンパイルし，コンパイルオプションによってどのよ

うに変化するかをまとめよ．

4. この課題の感想をまとめること．

5. レポートはA4用紙2枚以内にまとめること．（必ずPDFとすること）

（２段組，コードは小さい文字でもかまわない．）
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レポート 提出方法

5月13日（午後7時）までに電子メールで提出
人よりも先に提出している（先願性）と高得点

report_at_arch.cs.titech.ac.jp

電子メールのタイトル
Arch Report [学籍番号]
例 : Arch Report [33_77777]

電子メールの内容
氏名，学籍番号

回答
ＰＤＦファイルを添付 （必ずPDFとすること）

PDFファイルにも氏名，学籍番号を記入すること．

Ａ４用紙で２枚以内にまとめること．

2007年 前学期

計算機アーキテクチャ 第一 (E) 

データ形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０
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整数(integer)の表現

コンピュータは決まったビット幅を単位としてデータを処理．

例えば，８ビットコンピュータ は，８ビット単位で処理

ｎビットの整数表現は，２＾ｎ （2のn乗）種類の整数を表現

できる．（しか表現できない！）

８ビットであれば，２＾８ ＝ ２５６ 種類の整数．

表現できる範囲には限りがある．

効率の良い表現を利用して，資源を有効に活用する！

整数表現

符号なし表現

符号つき絶対値表現

２の補数表現

データの表現

MSB: Most Significant Bit, 最上位の桁

LSB: Least Significant Bit，最下位の桁

0 0 0 0 1 0 1 1

８ビット （１バイト） のデータ

MSB LSB

6ビット 5ビット 5ビット 5ビット 5ビット 6ビット

３２ビット （４バイト） のデータ
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整数：符号なし表現

ある整数ｍを２進数で表現する．
1110 であれば，10112 として下位ビットを決める．

上位の残ったビットを０で埋める．

8ビットであれば，０～２５５までの２５６個の整数を表
現できる．

簡潔な表現方法．

負数を表現できない！

0 0 0 0 1 0 1 1

８ビット （１バイト） のデータ

0 0 1 0 1

８ビット （１バイト） のデータ

1 0 1

整数：符号つき絶対値表現 （１）

ある整数ｍを２進数で表現する．
1110 であれば，10112 として下位ビットを決める．

ただし，最上位ビットを用いて符号を表す（符号ビット）．

ｍが正ならば，符号ビットを０，負ならば１とする．

残ったビットを０で埋める．

符号無し表現の自然な拡張

8ビットであれば，- 127 ～127 までの２５５個の整数を表
現できる？

0 0 0 0 1 0 1 1

符号ビット

+1110

- 1110
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整数：符号つき絶対値表現 （２）

8ビットであれば，- 127 ～127 までの２５５個の整
数を表現できる？

どうして２５６個の数を表現できないのか？

それは，ゼロに正と負の２つがあるから！

プログラマが問題を起こす原因となる．

符号つき絶対値表現が利用されることは少ない！

+0+127

-127-0

整数：符号つき絶対値表現 （3）

もう一度，８ビット時の，符号つき絶対値表現を確認

128
種類

1000 00002 = -010

1000 00012 = -110

1000 00102 = -210

…

1111 11012 = -12510

1111 11102 = -12610

1111 11112 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

符号つき絶対値表現が利用されることは少ない！
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整数：２の補数表現（１）

多くの計算機では２の補数 (two’s complement)
表現が利用される．

２の補数の利点

最上位ビットのみで正負判定が可能．

正負の反転が容易．

ビット幅の異なるデータへの変換が容易．

符号なし整数と同じハードウェアで加算を実装できる．

整数：２の補数表現（２）

その前に，１の補数 (one’s complement)
全てのビットを反転することで，マイナスを表現

128
種類

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710
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整数：２の補数表現（３）

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の１の補数表現 負の数の２の補数表現

２の補数では， ー１２８ ～ １２７ までの数を表現できる．

２の補数
（１の補数で表された数に１を加えたもの）を負の数とする．

整数：２の補数表現（４）

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数とする．

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の２の補数表現
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２の補数表現では，正負の反転を簡潔に実現できる！
正数から負数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

負数から正数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

整数：２の補数表現（５）

NOT

x

- x

1

ALU, add

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数
とする．

整数：２の補数表現（６）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

符号拡張

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 1111 11112 = -110

1111 1111 11102 = -210

…

1111 1000 00112 = -12510

1111 1000 00102 = -12610

1111 1000 00012 = -12710

1111 1000 00002 = -12810
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整数：２の補数表現（７）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

証明
AND

sign

x

1
x

8

4

4

4ある数 X が正の数の場合には自明．

それから．．．

講義項目

計算機システムの基本構成と動作原理

(1) 命令形式，アドレス指定形式

(2) 命令形式，データ形式

メモリ１：半導体メモリシステム，ファイルメモリシステム

メモリ２：記憶階層，キャッシュシステム

メモリ３：仮想記憶システム（セグメンテーション，ページング，等）

メモリ４：主記憶とファイルメモリの管理，多重仮想記憶，記憶保護

割り込み１：割り込みの必要性，割り込みの種類

割り込み２：割り込み処理の流れ

入出力制御１：チャネル，チャネルプログラム方式

入出力制御２：入出力動作の流れ，チャネル動作の効率化

入出力制御３：チャネルの種類，通信制御

レポートと期末試験により評価
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アナウンス

講義スライドおよびスケジュール

www.arch.cs.titech.ac.jp
講義日程が変更になることがあるので
頻繁に確認すること．

118
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

レポート課題

void sort (int v[], int n)

{

int i, j;

for (i = 0; i < n; i +=1){

for (j=i-1; j>=0 && v[j]>v[j+1]; j-=1) swap(v,j);

}

}

コンパイラの最適化オプションを変更しながら，
どのような命令列が出力されるか試してみる．
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2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

４．命令形式，アドレス指定形式

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-05-014

整数：２の補数表現（４）

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数とする．

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 11112 = -010

1111 11102 = -110

1111 11012 = -210

…

1000 00102 = -12510

1000 00012 = -12610

1000 00002 = -12710

0000 00002 = +010

0000 00012 = +110

0000 00102 = +210

…

0111 11012 = +12510

0111 11102 = +12610

0111 11112 = +12710

負の数の２の補数表現
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２の補数表現では，正負の反転を簡潔に実現できる！
正数から負数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

負数から正数への変換

２進数表現の１と０を反転する．

得られたデータに１を加える．

整数：２の補数表現（５）

NOT

x

- x

1

ALU, add

２の補数
１の補数で表された数（ビットの反転）に１を加えたものを負の数
とする．

整数：２の補数表現（６）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

符号拡張

1111 11112 = -110

1111 11102 = -210

…

1000 00112 = -12510

1000 00102 = -12610

1000 00012 = -12710

1000 00002 = -12810

1111 1111 11112 = -110

1111 1111 11102 = -210

…

1111 1000 00112 = -12510

1111 1000 00102 = -12610

1111 1000 00012 = -12710

1111 1000 00002 = -12810
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整数：２の補数表現（７）

符号拡張
ビット幅の異なるデータへの変換

例： ８ビットから１２ビットのデータへの変換

符号拡張の処理
ビット幅を増やすときには，最上位ビットの値で補填すればよい．

証明
AND

sign

x

1
x

8

4

4

4ある数 X が正の数の場合には自明．

それから．．．

２の補数の加算（１）

符号を意識することなく，符号なし整数の加算と同様に

計算できる．

0 0 0 0  0 1 1 1 2  =   7 10

+  0 0 0 0  0 1 1 0 2  =   6 10

0 0 0 0  1 1 0 1 2  = 13 10

0 0 0 0  1 1 0桁上げ
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２の補数の加算（２）

符号を意識することなく，符号なし整数の加算と同様に

計算できる．

0 0 0 0  0 1 1 1 2  =   7 10

+  1 1 1 1  1 0 1 0 2  =  -6 10

0 0 0 0  0 0 0 1 2  =   1 10

1 1 1 1  1 1 0桁上げ

減算： X – Y  = X + (- Y)

整数の表現のまとめ

符号なし表現

符号つき絶対値表現

１の補数表現

２の補数表現

最上位ビットのみで正負判定が可能．

正負の反転が容易．

ビット幅の異なるデータへの変換が容易．

符号なし整数と同じハードウェアで符号付き加算を実装できる．
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実数

少数を含む数値を取り扱う．

実数の例
3.1419926… (π)
0.000000001,  1.0 x 10-9

3,155,760,000, 3.1556 x 109

科学記数法： 小数点の左側には数字を一つしか書かない．
科学記数法で書いた数値で先頭に０がこないものを正規化数と呼ぶ．

固定小数点表現

あまり利用されない！

小数点の位置を固定する．

1 0 1 0 11 0 0

符号ビット
小数点

124 0.5 0.25 0.125 0.0625

- 2.625
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浮動小数点表現（１）

小数点位置が変動

科学記数法で数値で先頭に０がこない正規化数を利用．

1.xxxxxxxxx × 2
yyyy

仮数部

指数部

符号 指数部 仮数部

浮動小数点表現（２）

IEEE754

符号 指数部 仮数部

単精度
（３２ビット）

１ビット ８ビット ２３ビット

符号 指数部 仮数部

倍精度
（６４ビット）

１ビット １１ビット ５２ビット
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浮動小数点表現（３）

誤差

実数は不可算無限

決められたビットで表現できる数は有限

対応がうまくいかない多くで，丸め誤差が発生

表現できないほど大きな数

表現できないほど小さな数

非常に大きな数と，非常に小さな数の間の演算

10進数で 0.10 は，

2進数で 0.0001100110011… どうすれば良いか？

Packed decimal

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

プロセッサの原理

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-05-014
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MIPSの基本的な５つのステップ（ステージ）

IFステージ

メモリから命令をフェッチする．

IDステージ

命令をデコードしながら，レジスタを読み出す．

EXステージ

命令操作の実行またはアドレスの生成を行う．

MEMステージ

データ・メモリ中のオペランドにアクセスする．

WBステージ

結果をレジスタに書き込む．

133

プロセッサの主な構成要素
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プロセッサのデータパス（シングル・サイクル）

op           rs rt rd shamt funct
add $t0, $s1, $s2    [ add $8, $17, $18 ]

プロセッサの構成要素（１）
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Exercise

氏名，学籍番号，
学籍番号マーク欄(右詰で)

addi $t0, $t1, -1 [ addi $8, $9, -1 ] 

op           rs rt 16 bit immediate I  format

Exercise

addi $t0, $t1, -1 [ addi $8, $9, -1 ] 

op           rs rt 16 bit immediate I  format

$9

$8

-1 (0xffff)

-1 (0xffffffff)

PC = 0x20
$9 = 7

7

-1
6

6

0x20

0x24
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プロセッサのデータパス（シングル・サイクル）

addi $sp, $sp, 4 [ addi $29, $29, 4 ] 

op           rs rt 16 bit immediate I  format

プロセッサのデータパス（シングル・サイクル）

lw $t0, 24($s2)    [ lw $8, 24($18) ]

op           rs rt 16 bit immediate I  format
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プロセッサのデータパス（シングル・サイクル）

sw $t0, 24($s2)    [ sw $8, 24($18) ]

op           rs rt 16 bit immediate I  format

プロセッサのデータパス（シングル・サイクル）

beq $s0, $s1, Label    [beq $16, $17, Label ]

op           rs rt 16 bit immediate I  format
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プロセッサのデータパス（シングル・サイクル）

one clock period

144
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Sample program

#include <stdio.h>
int main(){

int i;
int sum = 0;

for(i=1; i<=100; i++)  sum += i;

return sum;
}

mipsel-linux-gcc –static –O0 main.c –o a.out
SimMips a.out
/home/share/cad/mipsel/usr/bin/mipsel-linux-gcc

コンパイラの最適化オプションを変更しながら，
SimMipsで実行し，その実行サイクル数をみる．
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レポート 問題

1. void max (int v[], int n)

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプションに

よってどのように変化するかをまとめよ．また，SimMipsで実行し，実行サイク

ル数を比較せよ．

2. void sort (int v[], int n)

をクロスコンパイラにてMIPS命令セットにコンパイルし，コンパイルオプションに

よってどのように変化するかをまとめよ．また，SimMipsで実行し，実行サイク

ル数を比較せよ．

3. 同様に，複雑なアプリケーションを作成し，それをクロスコンパイラにてMIPS命

令セットにコンパイルし，コンパイルオプションによってどのように変化するかを

まとめよ．また，SimMipsで実行し，実行サイクル数を比較せよ．

4. この課題の感想をまとめること．

5. レポートはA4用紙3枚以内にまとめること．（必ずPDFとすること）

（２段組，コードは小さい文字でもかまわない．）

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

講義用の計算機環境

講義用の計算機
131.112.16.56 
ssh arche@131.112.16.56

ユーザ名: arche
パスワードは講義時に連絡

cd myname (例: cd 06B77777)
cp –r /home/arche/v0.5.5 .
cd v0.5.5
memory.cc などを修正してコンパイル，実行

注意点

計算機演習室からは外部にsshで接続できないかもしれません．

Windowsからは Tera Term などを利用してください．
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レポート 提出方法

5月21日（午後7時）までに電子メールで提出
人よりも先に提出している（先願性）と高得点

report_at_arch.cs.titech.ac.jp

電子メールのタイトル
Arch Report [学籍番号]
例 : Arch Report [33_77777]

電子メールの内容
氏名，学籍番号

回答
ＰＤＦファイルを添付 （必ずPDFとすること）

PDFファイルにも氏名，学籍番号を記入すること．

Ａ４用紙で3枚以内にまとめること．

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

５．メモリ１：

半導体メモリシステム，ファイルメモリシステム

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-06-04
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エッジトリガ方式による設計

Clock cycle

State
Element

1

State
Element

2

Combinational
logic

プロセッサのデータパス（マルチ・サイクル）

one clock 
period

one clock 
period
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パイプライン処理 (pipelining)

151

パイプライン処理 (pipelining)

152
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プロセッサの３つの実現方式

シングル・サイクル

パイプライン処理

マルチ・サイクル

153

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

５．メモリ１：

半導体メモリシステム，ファイルメモリシステム

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-06-04



78

コンピュータ（ハードウェア）の古典的な要素

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

インタフェース

コンパイラ

性能の評価

オペレーティングシステム

Processor-Memory Performance Gap

1

10

100

1000

10000

19
80

19
83

19
86

19
89

19
92

19
95

19
98

20
01

20
04

Year

Pe
rf

or
m

an
ce

“Moore’s Law”

µProc
55%/year
(2X/1.5yr)

DRAM
7%/year
(2X/10yrs)

Processor-Memory
Performance Gap
(grows 50%/year)
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Machine Clock Rate

Clock rate (MHz, GHz) is inverse of clock cycle time 
(clock period)

Clock period =  1 / (clock rate)

one clock period

10 nsec clock cycle  =>  100 MHz clock rate

5 nsec clock cycle  =>  200 MHz clock rate

2 nsec clock cycle  =>  500 MHz clock rate

1 nsec clock cycle   =>      1 GHz clock rate

500 psec clock cycle =>      2 GHz clock rate

250 psec clock cycle =>      4 GHz clock rate

200 psec clock cycle =>      5 GHz clock rate

Clock Cycles per Instruction, CPI

Not all instructions take the same amount of time to execute

Clock cycles per instruction (CPI) – the average 
number of clock cycles each instruction takes to execute

CPI = 10.0
CPI = 1.0
CPI = 0.5
CPI = 0.1
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The “Memory Wall”

Arithmetic vs DRAM speed gap continues to grow

0.01

0.1

1

10

100

1000

VAX/1980 PPro/1996 2010+

Core
Memory
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n 
(C
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)

C
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ck
s 

pe
r D

R
A

M
 a

cc
es

s

Memory Performance Impact

A processor executes at 
ideal CPI = 1.1 
50% arith/logic,  20% control,  30% ld/st
10% of data memory operations miss 
with a 50 cycle miss penalty

CPI = ideal CPI + average stalls per instruction
= 1.1(cycle)  + ( 0.30 x 0.10 x 50 (cycle/miss) )
= 1.1 cycle +  1.5 cycle = 2.6

58% of the time the processor is stalled waiting for 
memory!
A 1% instruction miss rate would add 
an additional ? to the CPI!
Answer 0.5

Ideal CPI,
1.1

DataMiss,
1.5

InstrMiss,
0.5
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The Memory Hierarchy Goal

Fact:
Large memories are slow and 
fast memories are small

How do we create a memory that gives the illusion 
of being large, cheap and fast ?

With hierarchy （階層）

With parallelism （並列性）

Second
Level
Cache

(SRAM)

A Typical Memory Hierarchy

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB

Speed (%cycles): ½’s             1’s                  10’s                  100’s               1,000’s

Size (bytes):    100’s   K’s 10K’s                     M’s             G’s to T’s

Cost:         highest                                                         lowest

By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology
at the speed of fastest technology
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DRAM (dynamic random access memory)

SRAM (static random access memory)
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Characteristics of the Memory Hierarchy

Increasing 
distance 
from the 
processor in 
access time

L1$

L2$

Main Memory

Secondary  Memory

Processor

(Relative) size of the memory at each level

Inclusive (包括）–
what is in L1$ is a 
subset of what is 
in L2$  is a 
subset of what is 
in MM that is a 
subset of is in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes 
(block)

Memory Hierarchy Technologies

Caches use SRAM for speed 
and technology compatibility

Low density
(6 transistor cells), high power, 
expensive, fast
Static:  content will last   
“forever” (until power turned off)

Main Memory uses DRAM for size (density)
High density (1 transistor cells), low power, cheap, slow
Dynamic:  needs to be “refreshed” regularly (~ every 8 ms)

1% to 2% of the active cycles of the DRAM

Addresses divided into 2 halves (row and column)
RAS or Row Access Strobe triggering row decoder
CAS or Column Access Strobe triggering column selector

Dout[15-0]

SRAM
2M x 16

Din[15-0]

Address
Chip select

Output enable
Write enable

16

16

21
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Memory Performance Metrics

Latency（レイテンシ，応答時間）: 
Time to access one word

Cycle time:  time between requests

Access time:  time between the request and when the data 
is available (or written)

Usually cycle time > access time

Bandwidth（バンド幅，スループット）: 
How much data from the memory can be supplied to 
the processor per unit time

width of the data channel * the rate at which it can be used

Classical RAM Organization (~Square)

R
o
w

D
e
c
o
d
e
r

row
address

data bit or word

RAM Cell
Array

word (row) line

bit (data) lines

Each intersection 
represents a 
6-T SRAM cell or 
a 1-T DRAM cell

Column Selector &
I/O Circuits

column
address

One memory row holds a block 
of data, so the column address 
selects the requested bit or word
from that block
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data bit
data bit

Classical DRAM Organization (~Square Planes)

R
o
w

D
e
c
o
d
e
r

row
address

Column Selector &
I/O Circuits

column
address

data bit

word (row) line

bit (data) lines

Each intersection 
represents a 
1-T DRAM cell

The column address
selects the requested 
bit from the row in each plane

data word

. . 
.

. . .

RAM Cell
Array

Classical DRAM Operation

DRAM Organization:
N rows x N column x M-bit
Read or Write M-bit at a time
Each M-bit access requires
a RAS / CAS cycle

Row Address

CAS

RAS

Col Address Row Address Col Address

N
 ro

w
s

N cols

DRAM

M bit planes

Row
Address

Column
Address

M-bit Output

1st M-bit Access 2nd M-bit Access

Cycle Time
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N
 ro

w
s

N cols

DRAM

Column Address

M-bit Output
M bit planes

N x M SRAM

Row
Address

Page Mode DRAM Operation

Page Mode DRAM
N x M SRAM to save a row

After a row is read into the 
SRAM “register”

Only CAS is needed to access 
other M-bit words on that row
RAS remains asserted while CAS 
is toggled

Row Address

CAS

RAS

Col Address Col Address Col Address Col Address

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit
Cycle Time

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

６．メモリ２：

半導体メモリシステム，ファイルメモリシステム

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-06-11
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The Memory Hierarchy Goal

Fact:
Large memories are slow and 
fast memories are small

How do we create a memory that gives the illusion 
of being large, cheap and fast ?

With hierarchy （階層）

With parallelism （並列性）

Second
Level
Cache

(SRAM)

A Typical Memory Hierarchy

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB

Speed (%cycles): ½’s             1’s                  10’s                  100’s               1,000’s

Size (bytes):    100’s   K’s 10K’s                     M’s             G’s to T’s

Cost:         highest                                                         lowest

By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology
at the speed of fastest technology
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DRAM (dynamic random access memory)

SRAM (static random access memory)
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Characteristics of the Memory Hierarchy

Increasing 
distance 
from the 
processor in 
access time

L1$

L2$

Main Memory

Secondary  Memory

Processor

(Relative) size of the memory at each level

Inclusive (包括）–
what is in L1$ is a 
subset of what is 
in L2$  is a 
subset of what is 
in MM that is a 
subset of is in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes 
(block)

Classical RAM Organization (~Square)

R
o
w

D
e
c
o
d
e
r

row
address

data bit or word

RAM Cell
Array

word (row) line

bit (data) lines

Each intersection 
represents a 
6-T SRAM cell or 
a 1-T DRAM cell

Column Selector &
I/O Circuits

column
address

One memory row holds a block 
of data, so the column address 
selects the requested bit or word
from that block
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Memory Hierarchy Technologies

Caches use SRAM for speed 
and technology compatibility

Low density
(6 transistor cells), high power, 
expensive, fast
Static:  content will last   
“forever” (until power turned off)

Main Memory uses DRAM for size (density)
High density (1 transistor cells), low power, cheap, slow
Dynamic:  needs to be “refreshed” regularly (~ every 8 ms)

1% to 2% of the active cycles of the DRAM

Addresses divided into 2 halves (row and column)
RAS or Row Access Strobe triggering row decoder
CAS or Column Access Strobe triggering column selector

Dout[15-0]

SRAM
2M x 16

Din[15-0]

Address
Chip select

Output enable
Write enable

16

16

21

data bit
data bit

Classical DRAM Organization (~Square Planes)

R
o
w

D
e
c
o
d
e
r

row
address

Column Selector &
I/O Circuits

column
address

data bit

word (row) line

bit (data) lines

Each intersection 
represents a 
1-T DRAM cell

The column address
selects the requested 
bit from the row in each plane

data word

. . 
.

. . .

RAM Cell
Array
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Classical DRAM Operation

DRAM Organization:
N rows x N column x M-bit
Read or Write M-bit at a time
Each M-bit access requires
a RAS / CAS cycle

Row Address

CAS

RAS

Col Address Row Address Col Address

N
 ro

w
s

N cols

DRAM

M bit planes

Row
Address

Column
Address

M-bit Output

1st M-bit Access 2nd M-bit Access

Cycle Time

N
 ro

w
s

N cols

DRAM

Column Address

M-bit Output
M bit planes

N x M SRAM

Row
Address

Page Mode DRAM Operation

Page Mode DRAM
N x M SRAM to save a row

After a row is read into the 
SRAM “register”

Only CAS is needed to access 
other M-bit words on that row
RAS remains asserted while CAS 
is toggled

Row Address

CAS

RAS

Col Address Col Address Col Address Col Address

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit
Cycle Time
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N
 ro

w
s

N cols

DRAM

Column Address

M-bit Output
M bit planes

Row
Address

Synchronous DRAM (SDRAM) Operation

After a row is read into the SRAM 
register

Inputs CAS as the starting “burst”
address along with a burst length
Transfers a burst of data from a 
series of sequential addresses within 
that row

+1

Row Address

CAS

RAS

Col Address

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit

Cycle Time

Row Add 

N x M SRAM

Other DRAM Architectures

Double Data Rate SDRAMs – DDR-SDRAMs (and 
DDR-SRAMs)

Double data rate because they transfer data on both the 
rising and falling edge of the clock
Are the most widely used form of SDRAMs

DDR2-SDRAMs
DDR3-SDRAMs
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演習

512K x 8ビット （512KB) のSRAMを用いて、32ビットデータ幅の
4MB のメモリを実現したい．

8個のメモリチップ，チップ選択信号CS ， データ信号，アドレス信
号の接続を示せ．

氏名，学籍番号，
学籍番号マーク欄(右詰で)

A0

A22

D0

D
7

CS
A0

A22

D0

D
7

CS
A0

A22

D0

D
7

CS
A0

A22

D0

D
7

CS

A
0

A22

D
0

D7

CS
A

0

A22

D
0

D7

CS
A

0

A22

D
0

D7

CS
A

0

A22

D
0

D7

CS

A
0

A22

D
0

D7

CS
A

0

A22

D
0

D7

CS
A

0

A22

D
0

D7

CS
A

0

A22

D
0

D7

CS

A0

A
22

D
0

D
7

CS
A0

A
22

D
0

D
7

CS
A0

A
22

D
0

D
7

CS
A0

A
22

D
0

D
7

CS

A
0

A22

2 to 4
デコーダ

A23

A
24

0

1

2

D
0
～ D

7
D8～ D15 D16～ D23

D0～ D7

3 sample

演習

512K x 8ビット （512KB) のSRAMを用いて、32ビットデータ幅の
4MB のメモリを実現したい．

8個のメモリチップ，チップ選択信号CS ， データ信号(D)，アドレ
ス信号(A)の接続を示せ．

D7-D0D15-D8D23-D16D31-D24

A18 – A0 A

D

CS

A19

Not(A19)
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DRAM Memory Latency & Bandwidth Milestones

In the time that the memory to processor bandwidth doubles
the memory latency improves by a factor of only 1.2 to 1.4
To deliver such high bandwidth, the internal DRAM has to be 
organized as interleaved memory banks

526275125170225Latency (nsec)

16006402671604013BWidth (MB/s)

665420181616Pins/chip

204170130704535Die size (mm2)

256641610.250.06Mb/chip

200019971993198619831980Year

64b64b64b32b16b16bModule Width

DDR 
SDRAM

Synch 
DRAM

FastPage
DRAM

FastPage
DRAM

Page 
DRAM

DRAM

Patterson, CACM Vol 47, #10, 2004

The off-chip interconnect and memory architecture can 
affect overall system performance in dramatic ways

Memory Systems that Support Caches

One word wide organization (one word 
wide bus and one word wide memory)

Assume （前提）

1. 1 clock cycle to send the address
2. 25 clock cycles for DRAM cycle time, 

8 clock cycles access time
3. 1 clock cycle to return a word of data

Memory-Bus to Cache bandwidth
number of bytes transferred from 
memory to cache per clock cycle

CPU

Cache

Memory

bus32-bit data
&

32-bit addr
per cycle

on-chip
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One Word Wide Memory Organization

The pipeline stalls the number of cycles 
for one word (32bit) from memory

1 cycle to send address
25 cycles to read DRAM

1 cycle to return data
27 total clock cycles miss penalty

Number of bytes transferred per clock 
cycle (bandwidth) for a single miss

4 / 27 = 0.148 bytes per clock

CPU

Cache

Memory

bus32-bit data
&

32-bit addr
per cycle

on-chip

25 cycles

One Word Wide Memory Organization, con’t

What if the block size is four words?
1 cycle to send 1st address

4 * 25 = 100 cycles to read DRAM
1 cycle to return last data word

102 total clock cycles miss penalty

Number of bytes transferred per clock 
cycle (bandwidth) for a single miss

(4 x 4) / 102 = 0.157  bytes per clock

25 cycles

25 cycles

25 cycles

25 cycles

CPU

Cache

Memory

bus

on-chip
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One Word Wide Memory Organization, con’t

What if the block size is four words and 
if a fast page mode DRAM is used?

1 cycle to send 1st address
25 + (3 * 8) = 49 cycles to read DRAM

1 cycle to return last data word
51 total clock cycles miss penalty

Number of bytes transferred per clock 
cycle (bandwidth) for a single miss

(4 x 4) / 51 = 0.314  bytes per clock

25 cycles

8 cycles

8 cycles

8 cycles

CPU

Cache

Memory

bus

on-chip

Interleaved（インターリーブ） Memory Organization

For a block size of four words with
interleaved memory (4 banks)

1 cycle to send 1st address
25 + 3 = 28 cycles to read DRAM

1 cycle to return last data word
30 total clock cycles miss penalty

CPU

Cache

Memory
bank 1

bus

on-chip

Memory
bank 0

Memory
bank 2

Memory
bank 3

Number of bytes transferred per 
clock cycle (bandwidth) for a single 
miss

(4 x 4) / 30 = 0.533 bytes per clock

25 cycles

25 cycles

25 cycles

25 cycles
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The Memory Hierarchy Goal

Fact:
Large memories are slow and 
fast memories are small

How do we create a memory that gives the illusion 
of being large, cheap and fast ?

With hierarchy （階層）

With parallelism （並列性）
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Second
Level
Cache

(SRAM)

A Typical Memory Hierarchy

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB

Speed (%cycles): ½’s             1’s                  10’s                  100’s               1,000’s

Size (bytes):    100’s   K’s 10K’s                     M’s             G’s to T’s

Cost:         highest                                                         lowest

By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology
at the speed of fastest technology

Characteristics of the Memory Hierarchy

Increasing 
distance 
from the 
processor in 
access time

L1$

L2$

Main Memory

Secondary  Memory

Processor

(Relative) size of the memory at each level

Inclusive (包括）–
what is in L1$ is a 
subset of what is 
in L2$  is a 
subset of what is 
in MM that is a 
subset of is in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes 
(block)
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197

The Memory Hierarchy:  Why Does it Work?

Temporal Locality (時間的局所性，Locality in Time):
⇒ Keep most recently accessed data items closer to the 

processor

Spatial Locality (空間的局所性，Locality in Space):
⇒ Move blocks consisting of contiguous words to the upper 

levels 

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Block X

Block Y

198

The Memory Hierarchy:  Terminology

Hit: data is in some block in the upper level (Block X) 
Hit Rate: the fraction of memory accesses found in the upper level
Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Block X

Block Y

Miss: data is not in the upper level so needs to be retrieve 
from a block in the lower level (Block Y)

Miss Rate = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level                   

+ Time to deliver the block the processor 
Hit Time << Miss Penalty
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How is the Hierarchy Managed?

registers ↔ memory
by compiler (programmer?)

cache ↔ main memory
by the cache controller hardware

main memory ↔ disks
by the operating system (virtual memory)

virtual to physical address mapping assisted by the hardware (TLB, 
Translation Look-aside Buffer)

by the programmer (files)

200

Two questions to answer (in hardware):
Q1:  How do we know if a data item is in the cache?
Q2:  If it is, how do we find it?

Direct mapped
For each item of data at the lower level, there is exactly one 
location in the cache where it might be - so lots of items at 
the lower level must share locations in the upper level

Address mapping:
(block address) modulo (# of blocks in the cache)

First, consider block sizes of one word

Cache
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Caching:  A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache 
tag to the high order 
2 memory address 
bits to tell if the 
memory block is in the 
cache

Valid
Two low order bits 
define the byte in the 
word (32-b words)

Q2: How do we find 
it?

Use next 2 low 
order memory 
address bits – the 
index – to determine 
which cache block

(block address) modulo (# of blocks in the cache)

Index

202

Direct Mapped Cache

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0   1   2   3   4   3   4   15

00    Mem(0) 00    Mem(0)
00    Mem(1)

00    Mem(0) 00    Mem(0)
00    Mem(1)
00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01 4

11 15

00    Mem(1)
00    Mem(2)

00    Mem(3)

Start with an empty cache - all 
blocks initially marked as not valid

8 requests, 6 misses

Tag
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One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .        13 12  11     . . .        2  1  0
Byte 
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

204

Read hits (I$ and D$)
this is what we want!

Write hits (D$ only)
allow cache and memory to be inconsistent

write the data only into the cache block (write-back)
need a dirty bit for each data cache block to tell if it needs to be 
written back to memory when it is evicted

require the cache and memory to be consistent
always write the data into both the cache block and the next level in 
the memory hierarchy (write-through) so don’t need a dirty bit
writes run at the speed of the next level in the memory hierarchy –
so slow! – or can use a write buffer, so only have to stall if the 
write buffer is full

Handling Cache Hits

Lower Level
MemoryUpper Level

Memory

Block X

Block Y



103

205

Write Buffer for Write-Through Caching

Write buffer between the cache and main memory
Processor: writes data into the cache and the write buffer
Memory controller:  writes contents of the write buffer to memory

The write buffer is just a FIFO
Typical number of entries: 4
Works fine if store frequency is low

Memory system designer’s nightmare, Write buffer 
saturation （飽和）

One solution is to use a write-back cache; another is to use an L2 
cache

Processor
Cache

write buffer

DRAM

206

Exercise

3

Consider the main memory word reference string
3, 2, 18, 3, 16, 2, 3, 18, 3

miss

000  Mem(3)

9 requests, ? misses

Tag 氏名，学籍番号，
学籍番号マーク欄(右詰で)

000  Mem(3) 000  Mem(3) 000  Mem(3)

000  Mem(3) 000  Mem(3) 000  Mem(3)

000  Mem(3) 000  Mem(3) 000  Mem(3)

9 requests, ? misses
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Another Reference String Mapping

3 2 18 3

16 2 3 18

Consider the main memory word reference string
3, 2, 18, 3, 16, 2, 3, 18, 3

miss miss miss hit

miss miss hit miss

000   Mem(3) 000   Mem(3)
000   Mem(2)

3 hit

000   Mem(3)
100  Mem(18)

000   Mem(3)
100  Mem(18)

000   Mem(3)
100  Mem(18)

100  Mem(16)

000   Mem(3)
000   Mem(2)

100  Mem(16)

000   Mem(3)
000   Mem(2)

100  Mem(16)

000   Mem(3)
100  Mem(18)

100  Mem(16)

000   Mem(3)
100  Mem(18)

100  Mem(16)

208

Another Reference String Mapping

0 4 0 4

0 4 0 4

Consider the main memory word reference string
0   4   0   4   0   4   0   4

miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)
01

4

00    Mem(0)
01 4

00    Mem(0)
01

4
01    Mem(4)

000
01    Mem(4)

000

Ping pong effect due to conflict misses - two memory 
locations that map into the same cache block

8 requests, 8 misses
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Sources of Cache Misses

Compulsory (初期参照ミス，cold start or process 
migration, first reference):

First access to a block, “cold” fact of life, not a whole lot you 
can do about it
If you are going to run “millions” of instruction, compulsory 
misses are insignificant

Conflict (競合性ミス，collision):
Multiple memory locations mapped to the same cache location
Solution 1: increase cache size
Solution 2: increase associativity

Capacity (容量性ミス）:
Cache cannot contain all blocks accessed by the program
Solution: increase cache size 

210

Handling Cache Misses

Read misses (I$ and D$)
stall （ストール）the entire pipeline, fetch the block from the next 
level in the memory hierarchy, install it in the cache and send the 
requested word to the processor, then let the pipeline resume

Write misses (D$ only)
1. stall the pipeline, fetch the block from next level in the memory 

hierarchy, install it in the cache, write the word from the 
processor to the cache, then let the pipeline resume

or 
2. Write allocate – just write the word into the cache updating 

both the tag and data, no need to check for cache hit, no need to 
stall

or
3. No-write allocate – skip the cache write and just write the 

word to the write buffer (and eventually to the next memory 
level), no need to stall if the write buffer isn’t full; must invalidate 
the cache block since it will be inconsistent
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One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .        13 12  11     . . .        2  1  
0

Byte 
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

212

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30   . . .         13 12  11    . . .    4  3 2  1 0 Byte 
offset

20

20Tag

Hit Data

32

Block offset

Four  words/block, cache size = 1K words

What kind of locality are we taking advantage of?
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Direct Mapped Cache again!

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0   1   2   3   4   3   4   15

00    Mem(0) 00    Mem(0)
00    Mem(1)

00    Mem(0) 00    Mem(0)
00    Mem(1)
00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01 4

11 15

00    Mem(1)
00    Mem(2)

00    Mem(3)

8 requests, 6 misses

214

Taking Advantage of Spatial Locality

0

Let cache block hold more than one word
0   1   2   3   4   3   4   15

1 2

3 4 3

4 15

00    Mem(1)    Mem(0)

miss

00    Mem(1)    Mem(0)

hit

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

miss

hit

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

miss

00    Mem(3)    Mem(2)
00    Mem(1)    Mem(0)

01 5 4
hit

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

hit

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

00    Mem(3)    Mem(2)
01    Mem(5)    Mem(4)

miss

11 15 14

8 requests, 4 misses
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今日のまとめ: Cache Summary (1)

The Principle of Locality:
Program likely to access a relatively small portion of the address 
space at any instant of time

Temporal Locality: Locality in Time
Spatial Locality: Locality in Space

Three major categories of cache misses:
Compulsory misses: sad facts of life.  Example: cold start misses
Conflict misses:  increase cache size and/or associativity 
Nightmare Scenario: ping pong effect!
Capacity misses: increase cache size

Cache design space
total size, block size, associativity (replacement policy)
write-hit policy (write-through, write-back)
write-miss policy (write allocate, write buffers)

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

８．メモリ４：

キャッシュシステム，プロセッサシミュレータ

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０
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Miss Rate vs Block Size vs Cache Size
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Block size (bytes)
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) 8 KB
16 KB
64 KB
256 KB

Miss rate goes up if the block size becomes a significant 
fraction of the cache size 
because the number of blocks that can be held in the 
same size cache is smaller
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Block Size Tradeoff

Larger block size means larger miss penalty
Latency to first word in block + transfer time for remaining words

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks 
compromises
Temporal Locality

Block Size

Average
Access
Time

Increased Miss 
Penalty

& Miss Rate

Block Size

In general, Average Memory Access Time
= Hit Time  +   Miss Penalty x Miss Rate

Larger block sizes take advantage of spatial locality but
If the block size is too big relative to the cache size, 
the miss rate will go up

220

Reducing Cache Miss Rates, associativity

Allow more flexible block placement
In a direct mapped cache a memory block maps to exactly 
one cache block

At the other extreme, could allow a memory block to be 
mapped to any cache block – fully associative cache

A compromise is to divide the cache into sets each of which 
consists of n “ways” (n-way set associative).  
A memory block maps to a unique set and can be placed in 
any way of that set (so there are n choices)
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Caching:  A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache 
tag to the high order 
2 memory address 
bits to tell if the 
memory block is in the 
cache

Valid
Two low order bits 
define the byte in the 
word (32-b words)

Q2: How do we find 
it?

Use next 2 low 
order memory 
address bits – the 
index – to determine 
which cache block

(block address) modulo (# of blocks in the cache)

Index
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Set Associative Cache Example

0

Cache

Tag Data

Q: Is it there?

Compare all the cache 
tags in the set to the 
high order 3 memory 
address bits
to tell if the memory block 
is in the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

Main Memory

Two low order bits 
define the byte in the 
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order 
memory address bit to 
determine which cache 
set
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Another Reference String Mapping

0 4 0 4

Consider the main memory word reference string
0   4   0   4   0   4   0   4

miss miss hit hit

000    Mem(0) 000    Mem(0)

Start with an empty cache - all 
blocks initially marked as not valid

010    Mem(4) 010    Mem(4)

000    Mem(0) 000    Mem(0)

010    Mem(4)

Solves the ping pong effect in a direct mapped cache due to 
conflict misses

8 requests, 2 misses

224

Four-Way Set Associative Cache
28 = 256 sets each with four ways (each with one block)

31 30       . . .        13 12  11     . . .        2  1  
0

Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select
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Range of Set Associative Caches

For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block
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Costs of Set Associative Caches

N-way set associative cache costs
N comparators (delay and area)
MUX delay (set selection) before data is available
Data available after set selection and Hit/Miss decision.   

When a miss occurs, 
which way’s block do we pick for replacement ?

Least Recently Used (LRU):
the block replaced is the one that has been unused for the 
longest time

Must have hardware to keep track of when each way’s block was 
used 
For 2-way set associative, takes one bit per set →

set the bit when a block is referenced 
(and reset the other way’s bit)

Random
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Benefits of Set Associative Caches

The choice of direct mapped or set associative depends on the 
cost of a miss versus the cost of implementation

0
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1-way 2-way 4-way 8-way

Associativity
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R

at
e

4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB

Data from Hennessy & 
Patterson, Computer 
Architecture, 2003

Largest gains are in going from direct mapped to 2-way

228

Reducing Cache Miss Rates by multiple levels

Enough room on the die for bigger L1 caches or for a second level 
of caches – normally a unified L2 cache (i.e., it holds both 
instructions and data) and in some cases even a unified L3 cache
For our example, 

CPIideal of 2,  
100 cycle miss penalty (to main memory),  
36% load/stores,  
a 2% (4%) L1I$ (D$) miss rate,  
add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

CPIstalls =  2  +  .02×25  +  .36×.04×25  +  .005×100 + 
.36×.005×100 =  3.54             

(as compared to 5.44 with no L2$)

L1 cache L2 cache L3 cache
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Multilevel Cache Design Considerations

Design considerations for L1 and L2 caches are very 
different

Primary cache should focus on minimizing hit time in support of 
a shorter clock cycle
Secondary cache should focus on reducing miss rate to reduce 
the penalty of long main memory access times

The miss penalty of the L1 cache is significantly reduced by 
the presence of an L2 cache – so it can be smaller (i.e., 
faster) but have a higher miss rate
For the L2 cache, hit time is less important than miss rate

The L2$ hit time determines L1$’s miss penalty

230

Key Cache Design Parameters

L1 typical L2 typical

Total size (blocks) 250 to 2000 4000 to 
250,000

Total size (KB) 16 to 64 500 to 8000

Block size (B) 32 to 64 32 to 128

Miss penalty (clocks) 10 to 25 100 to 1000

Miss rates 2% to 5% 0.1% to 2%
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Two Machines’ Cache Parameters

Intel P4 AMD Opteron

L1 organization Split I$ and D$ Split I$ and D$

L1 cache size 8KB for D$, 96KB for 
trace cache (~I$)

64KB for each of I$ and D$

L1 block size 64 bytes 64 bytes

L1 associativity 4-way set assoc. 2-way set assoc.

L1 replacement ~ LRU LRU

L1 write policy write-through write-back

L2 organization Unified Unified

L2 cache size 512KB 1024KB (1MB)

L2 block size 128 bytes 64 bytes

L2 associativity 8-way set assoc. 16-way set assoc.

L2 replacement ~LRU ~LRU

L2 write policy write-back write-back

プロセッサのデータパス（シングル・サイクル）

addi $sp, $sp, 4 [ addi $29, $29, 4 ] 

op           rs rt 16 bit immediate I  format

PC  = 36
$29 = 8000
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Summary: The Cache Design Space

Several interacting dimensions
cache size
block size
associativity
replacement policy
write-through vs write-back
write allocation

The optimal choice is a compromise
depends on access characteristics

workload
I-cache, D-cache

depends on technology / cost

Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

OPT: Optimal Replacement Policy

MICRO-40  Emulating Optimal Replacement with a Shepherd Cache
OPT: あまり切迫していないものを置き換える．
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Optimal Replacement Policy の例

MICRO-40  Emulating Optimal Replacement with a Shepherd Cache

レポート 問題

1. SimMipsにデータキャッシュのヒット率を測定する仕組みを追加し，

ヒット率を測定せよ．

1. ダイレクトマップ方式，ラインサイズは４ワードとする．

2. セット数を８，１６，３２，６４，１２８，２５６，５１２に変更し

た場合のヒット率を示せ．

3. 以前作成した sort (1000要素のランダムデータ) を含む３つのアプリ

ケーションを作成し，そのヒット率を示すこと．

2. キャッシュのヒット率を改善する方式を実装し，その効果を示せ．

1. 例えば，ラインサイズの変更

2. 例えば，セットアソシアティブ方式

3. 例えば，フルアソシアティブ方式

3. レポートはA4用紙3枚以内にまとめること．（必ずPDFとすること）

（２段組，コードは小さい文字でもかまわない．）
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

講義用の計算機環境

講義用の計算機

131.112.16.56 
ssh arche@131.112.16.56

ユーザ名: arche
パスワードは講義時に連絡

cd myname (例: cd 06B77777)
cp –r /home/arche/v0.5.5 .
cd v0.5.5
memory.cc などを修正してコンパイル，実行

注意点

計算機演習室からは外部にsshで接続できないかもしれません．

Windowsからは Tera Term などを利用してください．

レポート 提出方法

7月4日（午後7時）までに電子メールで提出
今回は先願性は考慮しません．

report_at_arch.cs.titech.ac.jp

電子メールのタイトル
Arch Report [学籍番号]
例 : Arch Report [33_77777]

電子メールの内容
氏名，学籍番号

回答
ＰＤＦファイルを添付 （必ずPDFとすること）

PDFファイルにも氏名，学籍番号を記入すること．

Ａ４用紙で3枚以内にまとめること．
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Magnetic Disk （磁気ディスク）

Purpose
Long term, nonvolatile（不揮発性） storage
Lowest level in the memory hierarchy

slow, large, inexpensive

General structure
A rotating platter coated with a magnetic surface
A moveable read/write head to access 
the information on the disk

Typical numbers
1 to 4 platters per disk of 1” to 5.25” in diameter (3.5” dominate in 2004)
Rotational speeds of 5,400 to 15,000 RPM (rotation per minute)
10,000 to 50,000 tracks per surface

cylinder - all the tracks under the head at a given point on all surfaces
100 to 500 sectors per track

the smallest unit that can be read/written (typically 512B)

Platter

Track

Platters

Sectors

Tracks

242

Disk Drives

To access data:
seek time （シーク時間）:  position head over the proper track
rotational latency （回転待ち時間）:  wait for desired sector
transfer time （転送時間）:  grab the data  (one or more sectors)
Controller time（制御時間）: the overhead the disk controller 
imposes in performing a disk I/O access 

Platter

Track

Platters

Sectors

TracksSector
Track

Cylinder

Head
Platter

Controller
+

Cache



122

243243

Magnetic Disk Characteristic

Disk read/write components
1. Seek time: position the head over the                                    

proper track (3 to 14 ms avg)
due to locality of disk references                              
the actual average seek time may                                
be only 25% to 33% of the                                       
advertised number

2. Rotational latency:  wait for the desired sector to rotate 
under the head (½ of 1/RPM converted to ms)

0.5/5400RPM = 5.6ms to       0.5/15000RPM = 2.0ms
3. Transfer time:  transfer a block of bits (one or more sectors) 

under the head to the disk controller’s cache (30 to 80 MB/s
are typical disk transfer rates)

4. Controller time:  the overhead the disk controller imposes in 
performing a disk I/O access (typically < .2 ms)

Sector
Track

Cylinder

Head
Platter

Controller
+

Cache
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Typical Disk Access Time 

If the measured average seek time is 25% of the 
advertised average seek time, then

Avg disk read/write time
=  6.0ms + 0.5/(10000RPM/(60sec/minute) )+   

0.5KB/(50MB/sec) + 0.2ms  
=  6.0 + 3.0 + 0.01 + 0.2  
=  9.21ms

Avg disk read/write =   1.5 + 3.0 + 0.01 + 0.2   =   4.71ms

The average time to read or write a 512B sector for a 
disk rotating at 10,000RPM with average seek time of 
6ms, a 50MB/sec transfer rate, and a 0.2ms controller 
overhead

The rotational latency is usually the largest 
component of the access time
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Disk Latency & Bandwidth Milestones

Disk latency is one average seek time plus the rotational latency.
Disk bandwidth is the peak transfer time of formatted data from 
the media (not from the cache).

CDC 
Wren

SG ST41 SG ST15 SG ST39 SG ST37

Speed (RPM) 3600 5400 7200 10000 15000

Year 1983 1990 1994 1998 2003

Capacity (Gbytes) 0.03 1.4 4.3 9.1 73.4

Diameter (inches) 5.25 5.25 3.5 3.0 2.5

Interface ST-412 SCSI SCSI SCSI SCSI

Bandwidth (MB/s) 0.6 4 9 24 86

Latency (msec) 48.3 17.1 12.7 8.8 5.7

Patterson, CACM Vol 47, #10, 2004

246246

Latency & Bandwidth Improvements

In the time that the disk bandwidth doubles the 
latency improves by a factor of only 1.2 to 1.4

0

20

40

60

80

100

1983 1990 1994 1998 2003
Year of Introduction

Bandwidth (MB/s)

Latency (msec)
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Reliability（信頼性）, Availability

Reliability – measured by the mean time to failure
(平均故障寿命，MTTF).  Service interruption is 
measured by mean time to repair (平均修復時間，
MTTR)
Availability（アベイラビリティ）

Availability = MTTF / (MTTF + MTTR)

To increase MTTF, either improve the quality of the 
components or design the system to continue operating 
in the presence of faulty components
1. Fault avoidance:  preventing fault occurrence by construction
2. Fault tolerance:  using redundancy to correct or bypass faulty 

components (hardware)

248248

RAID:  Disk Arrays

Arrays of small and inexpensive disks
Increase potential throughput by having many disk drives

Data is spread over multiple disk
Multiple accesses are made to several disks at a time

Reliability is lower than a single disk
But availability can be improved by adding redundant 
disks (RAID)

Redundant Array of Inexpensive Disks
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RAID: Level 0 (冗長性なし; Striping ストライピング)

Multiple smaller disks as opposed to one big disk
Spreading the blocks over multiple disks – striping – means 
that multiple blocks can be accessed in parallel increasing the 
performance 

A 4 disk system gives four times the throughput of a 1 disk system

Same cost as one big disk – assuming 4 small disks cost the 
same as one big disk

No redundancy, so what if one disk fails?

blk1 blk3blk2 blk4

250250

RAID: Level 1 (Redundancy via Mirroring)

Uses twice as many disks for redundancy 
so there are always two copies of the data

The number of redundant disks = the number of data disks  
so twice the cost of one big disk

writes have to be made to both sets of disks, 
so writes would be only 1/2 the performance of RAID 0

What if one disk fails?
If a disk fails, the system just goes to the “mirror” for the data

blk1.1 blk1.3blk1.2 blk1.4 blk1.1 blk1.2 blk1.3 blk1.4

redundant (check) data
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RAID: Level 0+1 (Striping with Mirroring)

Combines the best of RAID 0 and RAID 1, 
data is striped across four disks and mirrored to four disks

Four times the throughput (due to striping)
# redundant disks = # of data disks  
so twice the cost of one big disk

writes have to be made to both sets of disks, 
so writes would be only 1/2 the performance of RAID 0

What if one disk fails?
If a disk fails, the system just goes to the “mirror” for the data

blk1 blk3blk2 blk4 blk1 blk2 blk3 blk4

redundant (check) data
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RAID: Level 2 (Redundancy via ECC)

ECC disks contain the parity of data on a set of distinct 
overlapping disks

# redundant disks = log (total # of data disks)   
so almost twice the cost of one big disk

writes require computing parity to write to the ECC disks
reads require reading ECC disk and confirming parity

blk1,b0 blk1,b2blk1,b1 blk1,b3
Checks 
4,5,6,7

Checks 
2,3,6,7

Checks 
1,3,5,7

3 5 6 7 4 2 1

10 0 0 11

ECC disks

0

誤り訂正コード (ECC, error-correcting code) disks 4 and 2 point to either 
data disk 6 or 7, but ECC disk 1 says disk 7 is okay, so disk 6 must be in error

1
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RAID: Level 3 (Bit-Interleaved Parity)

Cost of higher availability is reduced to 1/N where N is the 
number of disks in a protection group （保護グループ）

# redundant disks = 1 × # of protection groups
writes require writing the new data to the data disk as well as 
computing the parity, meaning reading the other disks, 
so that the parity disk can be updated
reads require reading all the operational data disks as well as the 
parity disk to calculate the missing data that was stored on the failed 
disk

blk1,b0 blk1,b2blk1,b1 blk1,b3

10 01

bit parity disk
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RAID: Level 4 (Block-Interleaved Parity)

Cost of higher availability still only 1/N but the parity is 
stored as blocks associated with sets of data blocks

Four times the throughput (striping)
# redundant disks = 1 × # of protection groups
Supports “small reads” and “small writes” (reads and writes that 
go to just one (or a few) data disk in a protection group) 

Block parity disk

blk1 blk2 blk3 blk4
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Small Writes

RAID 3
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P

⊕3 reads and        
2 writes

involving all
the disks

RAID 4 small writes
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P

2 reads and        
2 writes

involving just 
two disks

⊕
⊕

XOR

256256

RAID: Level 5 (Distributed Block-Interleaved Parity)

Cost of higher availability still only 1/N but the parity 
block can be located on any of the disks 
so there is no single bottleneck for writes

Still four times the throughput (striping)
# redundant disks = 1 × # of protection groups
Supports “small reads” and “small writes” (reads and writes 
that go to just one (or a few) data disk in a protection group)
Allows multiple simultaneous writes

one of these assigned as the block parity disk
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Distributing Parity Blocks

By distributing parity blocks to all disks, some small 
writes can be performed in parallel

1         2          3          4         P0

5         6          7          8         P1

9        10         11       12        P2

13       14        15        16        P3

RAID 4 RAID 5

1         2          3          4         P0 

5         6          7         P1         8

9        10        P2       11        12

13       P3        14        15        16

258258

Disk and RAID Summary

Four components of disk access time:
Seek Time:  advertised to be 3 to 14 ms but lower in real systems
Rotational Latency:  5.6 ms at 5400 RPM and 2.0 ms at 15000 
RPM
Transfer Time:  30 to 80 MB/s
Controller Time:  typically less than .2 ms

RAIDs can be used to improve availability
RAID 0 and RAID 5 – widely used in servers, one estimate is that 
80% of disks in servers are RAIDs
RAID 1 (mirroring) – EMC, Tandem, IBM
RAID 3 – Storage Concepts
RAID 4 – Network Appliance

RAIDs have enough redundancy to allow continuous 
operation
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
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Come, ISCA2008
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SSD (Solid State Drive)

262

SSD (Solid State Drive)
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Memory Hierarchy

Increasing 
distance 
from the 
processor in 
access time

L1$

L2$

Main Memory

Secondary  Memory

Processor

(Relative) size of the memory at each level

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes 
(block)

264

Loading and Storing Bytes

op            rs rt 16 bit offset

MIPS has two basic data transfer instructions for 
accessing memory
lw $t0, 4($s3)  # load word from memory

sw $t0, 8($s3)  # store word to memory

The data is loaded into (lw) or stored from (sw) a 
register in the register file
The memory address – a 32 bit address – is formed by 
adding the contents of the base address register to the 
offset value
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例：３２ビットのメモリ空間

00000000 00000000 00000000 000000002 = 010

11111111 11111111 11111111 111111112  = 4,294,967,296 - 110

0x00000000

0xFFFFFFFF

266

Virtual Memory （仮想記憶）

Use main memory as a “cache” for 
secondary memory

Simplifies loading a program for execution 
by providing for code relocation (i.e., the code 
can be loaded anywhere in main memory)
Provides the ability to easily run programs
larger than the size of physical memory
Allows efficient and safe sharing of memory 
among multiple programs

Main memory
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Virtual Memory （仮想記憶）

What makes it work?  – again the Principle of Locality

A program is likely to access a relatively small 
portion of its address space during any period 
of time

268

Virtual Memory （仮想記憶）

Each program is compiled into its own 
address space –
a “virtual” address space

During run-time each 
virtual address, VA （仮想アドレス） must be 
translated to a 
physical address, PA （物理アドレス）

Main memory
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Two Programs Sharing Physical Memory

Program 1
virtual address space

main memory

A program’s address space is divided into pages (all one 
fixed size) or segments (variable sizes)

The starting location of each page (either in main memory or in 
secondary memory) is contained in the program’s page table

Program 2
virtual address space

270

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31  30                          .  .  .                         12  11          .  .  .          0

Page offsetPhysical page number

Physical Address (PA)
29                        .  .  .                               12  11                            0

Translation

So each memory request first requires an address 
translation from the virtual space to the physical space

A virtual address is translated to a physical address by a 
combination of hardware and software
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Address Translation Mechanisms

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表） in main memory

Offset

Physical page #

Offset

page fault : 
page is not in physical memory

272

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31  30                          .  .  .                         12  11          .  .  .          0

Page offsetPhysical page number

Physical Address (PA)
29                        .  .  .                               12  11                            0

Translation

ページサイズは？ ページ表のメモリサイズは？

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table （ページ表）
(in main memory)

Offset

Physical page #

Offset
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Virtual Addressing with a Cache

Thus it takes an extra memory access to translate a 
virtual address to a physical address

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

This makes memory (cache) accesses very expensive
(if every access was really two accesses)
The hardware fix is to use a Translation Lookaside
Buffer (TLB) – a small cache that keeps track of 
recently used address mappings to avoid having to do a 
page table lookup

274

Virtual Addressing, the hardware fix

The hardware fix is to use a Translation 
Lookaside Buffer (TLB) （アドレス変換バッファ）

a small cache that keeps track of recently used 
address mappings to avoid having to do a page 
table lookup
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Making Address Translation Fast

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag
Physical page

base addrV

TLB

Page Table
(in physical memory)

276

Translation Lookaside Buffers (TLBs)

Just like any other cache, the TLB can be organized 
as fully associative, set associative, or direct mapped

V    Virtual Page #      Physical Page #    Dirty    Ref

TLB access time is typically smaller than cache access 
time (because TLBs are much smaller than caches)

TLBs are typically not more than 128 to 256 entries even on 
high end machines
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A TLB in the Memory Hierarchy

A TLB miss – is it a page fault or merely a TLB miss? 
If the page is loaded into main memory, then the TLB miss can 
be handled (in hardware or software) by loading the translation 
information from the page table into the TLB

Takes 10’s of cycles to find and load the translation info into 
the TLB

If the page is not in main memory, then it’s a true page fault
Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t
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A TLB in the Memory Hierarchy

page fault : page is not in physical memory
TLB misses are much more frequent than true page 
faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t
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Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions 
and 1TLB for data
Both 4-way set 
associative
Both use ~LRU 
replacement                         

Both have 128 entries

TLB misses handled in 
hardware

2 TLBs for instructions and 
2 TLBs for data
Both L1 TLBs fully 
associative with ~LRU 
replacement
Both L2 TLBs are 4-way set 
associative with round-robin 
LRU
Both L1 TLBs have 40 
entries
Both L2 TLBs have 512 
entries
TBL misses handled in 
hardware

280

TLB Event Combinations

TLB Page 
Table

Cache Possible?  Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/
Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not 
checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data
not in cache

Yes – page fault
Impossible – TLB translation not possible if
page is not present in memory

Impossible – data not allowed in cache if 
page is not in memory
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Reducing Translation Time

Can overlap the cache access with the TLB access
Works when the high order bits of the VA are used to access 
the TLB while the low order bits are used as index into cache

Tag Data

=

Tag Data

=

Cache Hit Desired word

VA Tag PA
Tag

TLB Hit

2-way Associative Cache
Index

PA Tag

Block offset

282

A TLB in the Memory Hierarchy

page fault : page is not in physical memory
TLB misses are much more frequent than true page 
faults

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

¾ t¼ t
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Why Not a Virtually Addressed Cache?

A virtually addressed cache would only require 
address translation on cache misses

data

CPU
Trans-
lation

Cache

Main
Memory

VA

hit

PA

but
Two different virtual addresses can map to the same physical 
address (when processes are sharing data), 
Two different cache entries hold data for the same physical 
address – synonyms （別名）

Must update all cache entries with the same physical address or the 
memory becomes inconsistent

284

The Hardware/Software Boundary

What parts of the virtual to physical address translation 
is done by or assisted by the hardware?

Translation Lookaside Buffer (TLB) that caches the 
recent translations

TLB access time is part of the cache hit time
May cause an extra stage in the pipeline for TLB 
access

Page table storage, fault detection and updating

Page faults result in interrupts (precise) that 
are then handled by the OS
Hardware must support (i.e., update 
appropriately) Dirty and Reference bits (e.g., 
~LRU) in the Page Tables
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Summary

The Principle of Locality:
Program likely to access a relatively small portion of the 
address space at any instant of time.

Temporal Locality: Locality in Time
Spatial Locality: Locality in Space

Caches, TLBs, Virtual Memory all understood by 
examining how they deal with the four questions
1. Where can block be placed?
2. How is block found?
3. What block is replaced on miss?
4. How are writes handled?
Page tables map virtual address to physical address

TLBs are important for fast translation

2009年 前学期 TOKYO TECH

計算機アーキテクチャ 第一 (E) 

１１．入出力制御，割り込み

吉瀬 謙二 計算工学専攻
kise_at_cs.titech.ac.jp
W641講義室 木曜日１３：２０ － １４：５０

2009-07-16
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コンピュータ（ハードウェア）の古典的な要素

出典： パターソン ＆ ヘネシー、 コンピュータの構成と設計

出力出力
制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

プロセッサは記憶装置から命令とデータを取り出す。入力装置はデータを記憶装置
に書き込む。出力装置は記憶装置からデータを読みだす。制御装置は、データパス、
記憶装置、入力装置、そして出力装置の動作を指定する信号を送る。

288

Input and Output Devices （入出力装置）
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Input and Output Devices （入出力装置）

I/O devices are diverse with respect to
Behavior （動作） – input, output or storage
Partner （相手） – human or machine
Data rate （転送速度） – the peak rate at which data can be 
transferred between the I/O device and the main memory or CPU 

Device Behavior Partner Data rate (Mb/s)

Keyboard input human 0.0001

Mouse input human 0.0038

Laser printer output human 3.2000

Graphics display output human 800.0000-8000.0000

Network/LAN input or 
output

machine 100.0000-1000.0000

Magnetic disk storage machine 240.0000-2560.0000

8 orders of m
agnitude 

range

290

A Typical I/O System （代表的な入出力装置）

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk
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Bus, I/O System Interconnect

A bus （バス） is a shared communication link 
(a single set of wires used to connect multiple subsystems)

1bit data wire

1bit control wire

292

Bus, I/O System Interconnect

A bus （バス） is a shared communication link (a single set 
of wires used to connect multiple subsystems)

Advantages

Low cost – a single set of wires is shared in multiple ways
Versatile （多目的） – new devices can be added easily and 
can be moved between computer systems that use the same 
bus standard

Disadvantages

Creates a communication bottleneck – bus bandwidth limits 
the maximum I/O throughput

The maximum bus speed is largely limited by
The length of the bus
The number of devices on the bus
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Bus Characteristics

Control lines
Signal requests and acknowledgments
Indicate what type of information is on the data lines

Data lines
Data, addresses, and complex commands

Bus transaction consists of
Master issuing the command (and address) – request
Slave receiving (or sending) the data – action
Defined by what the transaction does to memory

Input – inputs data from the I/O device to the memory
Output – outputs data from the memory to the I/O device

Bus
Master

Bus
Slave

Control lines: Master initiates requests

Data lines: Data can go either way

294

Types of Buses

Processor-memory bus
Short and high speed
Matched to the memory system to maximize the memory-processor 
bandwidth
Optimized for cache block transfers

I/O bus (industry standard, e.g., SCSI, USB, Firewire)
Usually is lengthy and slower
Needs to accommodate a wide range of I/O devices
Connects to the processor-memory bus or backplane bus

Backplane bus (industry standard, e.g., ATA, PCIexpress)
The backplane is an interconnection structure within the chassis
Used as an intermediary bus connecting I/O busses to the 
processor-memory bus
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Types of Buses

Processor Main 
Memory

Backplane bus

I/O devices

Processor Main 
Memory

Processor-memory bus

Bus
adapter

I/O bus

Bus
adapter

Bus
adapter

296

Types of Buses

Processor Main 
Memory

Processor-memory bus

Bus
adapter

Backplane bus

Bus
adapter

I/O bus

Bus
adapter
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Synchronous（同期式）, Asynchronous（非同期式） Buses

Synchronous bus (e.g., processor-memory buses)
Includes a clock in the control lines and has a fixed protocol for 
communication that is relative to the clock
Advantage: involves very little logic and can run very fast
Disadvantages:

Every device communicating on the bus must use same clock rate
To avoid clock skew, they cannot be long if they are fast

Asynchronous bus (e.g., I/O buses)
It is not clocked, so requires a handshaking protocol and 
additional control lines (ReadReq, Ack, DataRdy)
Advantages:

Can accommodate a wide range of devices and device speeds
Can be lengthened without worrying about clock skew or 
synchronization problems

Disadvantage: slow

298

Asynchronous Bus Handshaking Protocol

7. I/O device sees DataRdy go low and drops Ack

Output (read) data from memory to an I/O device

1
2

3

ReadReq

Data

Ack

DataRdy

addr data

4

5
6

7

1. Memory sees ReadReq, reads addr from data lines, and raises Ack
2. I/O device sees Ack and releases the ReadReq and data lines
3. Memory sees ReadReq go low and drops Ack
4. When memory has data ready, it places it on data lines and raises DataRdy
5. I/O device sees DataRdy, reads the data from data lines, and raises Ack
6. Memory sees Ack, releases the data lines, and drops DataRdy
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The Need for Bus Arbitration （調停）

I/O devices

Bus

1bit data wire

1bit control wire

300

The Need for Bus Arbitration （調停）

Multiple devices may need to use the bus at the same time
Bus arbitration schemes usually try to balance:

Bus priority – the highest priority device should be serviced first
Fairness – even the lowest priority device should never be completely locked 
out from the bus

Bus arbitration schemes can be divided into four classes
Daisy chain arbitration
Centralized, parallel arbitration
Distributed arbitration by collision detection

device uses the bus when its not busy and if a collision happens
(because some other device also decides to use the bus) then the
device tries again later (Ethernet)

Distributed arbitration by self-selection
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Daisy Chain Bus Arbitration （デイジーチェイン方式）

Advantage: simple
Disadvantages:

Cannot assure fairness – a low-priority device may be locked out
Slower – the daisy chain grant signal limits the bus speed

Bus
Arbiter

Device 2

Grant Grant Grant
Release

Request

wired-OR
Data/Addr

Device 1
Highest
Priority

Device N
Lowest
Priority

302

Centralized Parallel Arbitration （集中並列方式）

Advantages:  flexible, can assure fairness
Disadvantages:  more complicated arbiter hardware
Used in essentially all processor-memory buses and in 
high-speed I/O buses

Bus
Arbiter

Device 1 Device NDevice 2

Ack1

Data/Addr

Ack2

AckN

Request1 Request2 RequestN
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The Need for Bus Arbitration （調停）

Multiple devices may need to use the bus at the same time
Bus arbitration schemes usually try to balance:

Bus priority – the highest priority device should be serviced first
Fairness – even the lowest priority device should never be completely locked 
out from the bus

Bus arbitration schemes can be divided into four classes
Daisy chain arbitration
Centralized, parallel arbitration
Distributed arbitration by collision detection （分散衝突検出方式）

device uses the bus when its not busy and if a collision happens
(because some other device also decides to use the bus) then the
device tries again later (Ethernet)

Distributed arbitration by self-selection （分散型自己判定方式）

304

Buses in Transition

From synchronous, parallel, wide buses to 
asynchronous narrow buses

Reflection on wires and clock skew makes it difficult to use 16 
to 64 parallel wires running at a high clock rate (e.g., ~400 
MHz) so companies are transitioning to buses with a few one-
way wires running at a very high “clock” rate (~2 GHz)

PCI PCIexpress ATA Serial ATA

Total # wires 120 36 80 7

# data wires 32 – 64        
(2-way)

2 x 4          
(1-way)

16              
(2-way)

2 x 2           
(1-way)

Clock (MHz) 33 – 133 635 50 150

Peak BW (MB/s) 128 – 1064 300 100 375 (3 Gbps)
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ATA Cable Sizes

Serial ATA cables (red) are much thinner than 
parallel ATA cables (green)

306

Bus Bandwidth Determinates

The bandwidth of a bus is determined by
Whether its is synchronous or asynchronous and the timing 
characteristics of the protocol used
The data bus width
Whether the bus supports block transfers or only word transfers

Firewire USB 2.0

Type I/O I/O

Data lines 4 2

Clocking Asynchronous Synchronous

Max # devices 63 127

Max length 4.5 meters 5 meters

Peak 
bandwidth

50 MB/s (400 Mbps)  
100 MB/s (800 Mbps)

0.2 MB/s (low)     
1.5 MB/s (full)      
60 MB/s (high)
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Example:  The Pentium 4’s Buses

System Bus (“Front Side Bus”): 
64b x 800 MHz (6.4GB/s), 533 
MHz, or 400 MHz

2 serial ATAs: 
150 MB/s

8 USBs:    60 MB/s

2 parallel ATA: 
100 MB/s

Hub Bus: 8b x 266 MHz

Memory Controller Hub 
(“Northbridge”)

I/O Controller Hub 
(“Southbridge”)

Gbit ethernet: 0.266 GB/s
DDR SDRAM 

Main 
Memory

Graphics output:    
2.0 GB/s

PCI:             
32b x 33 MHz

308

I/O Systemの利用方法と割り込み

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

308
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Communication of I/O Devices and Processor

How the processor directs the I/O devices
Memory-mapped I/O

Portions of the high-order memory address space 
are assigned to each I/O device
Read and writes to those memory addresses are 
interpreted
as commands to the I/O devices
Load/stores to the I/O address space can only be 
done by the OS

Special I/O instructions

310

Communication of I/O Devices and Processor

How the I/O device communicates with the 
processor

Polling – the processor periodically checks the status 
of an I/O device to determine its need for service

Processor is totally in control – but does all the 
work
Can waste a lot of processor time due to speed 
differences

Interrupt-driven I/O – the I/O device issues an 
interrupts to the processor to indicate that it 
needs attention
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Interrupt-Driven Input

memory

user
program

1. input 
interrupt

2.1 save state

Processor

ReceiverMemory

add
sub
and
or
beq

lbu
sb
...
jr

2.2 jump to 
interrupt
service routine

2.4 return
to user code

Keyboard

2.3 service 
interrupt

input
interrupt
service
routine

312

Interrupt-Driven Output

Processor

TrnsmttrMemory

Display

add
sub
and
or
beq

lbu
sb
...
jr

memory

user
program

1.output 
interrupt

2.1 save state

output
interrupt
service
routine

2.2 jump to 
interrupt
service routine

2.4 return
to user code

2.3 service 
interrupt
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Interrupt-Driven I/O

An I/O interrupt is asynchronous
Is not associated with any instruction so doesn’t prevent any instruction 
from completing

You can pick your own convenient point to handle the interrupt
With I/O interrupts

Need a way to identify the device generating the interrupt
Can have different urgencies (so may need to be prioritized) 

Advantages of using interrupts
No need to continuously poll for an I/O event; user program progress is 
only suspended during the actual transfer of I/O data to/from user 
memory space

Disadvantage – special hardware is needed to
Cause an interrupt (I/O device) and detect an interrupt and save the 
necessary information to resume normal processing after servicing the 
interrupt (processor)

314

Direct Memory Access (DMA)

For high-bandwidth devices (like disks) interrupt-
driven I/O would consume a lot of processor cycles
DMA – the I/O controller has the ability to transfer 
data directly to/from the memory without involving 
the processor
There may be multiple DMA devices in one system

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk
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Direct Memory Access (DMA) how to?

1. The processor initiates the DMA transfer by supplying 
the I/O device address, the operation to be performed, 
the memory address destination/source, the number of 
bytes to transfer

2. The I/O DMA controller manages the entire transfer 
(possibly thousand of bytes in length), arbitrating for 
the bus

3. When the DMA transfer is complete, the I/O controller 
interrupts the processor to let it know that the transfer 
is complete

316

I/O and the Operating System

The operating system acts as the interface between the 
I/O hardware and the program requesting I/O

To protect the shared I/O resources, the user program is not 
allowed to communicate directly with the I/O device

Thus OS must be able to give commands to I/O devices, 
handle interrupts generated by I/O devices, provide fair 
access to the shared I/O resources, and schedule I/O 
requests to enhance system throughput

I/O interrupts result in a transfer of processor 
control to the supervisor (OS) process
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Types of Buses

Processor Main 
Memory

Processor-memory bus

Bus
adapter

Backplane bus

Bus
adapter

I/O bus

Bus
adapter
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ネットワーク

319319

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Interconnection Network

(a) Bus

(c) Grid, mesh
(d) Torus

(b) Crossbar

320320
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Interconnection Network Performance Metrics

Network cost
number of switches
number of links on a switch to connect to the network (plus one 
link to connect to the processor)
width in bits per link, length of link

Network bandwidth (NB)
– represents the best case

bandwidth of each link * number of links

Bisection bandwidth (BB)バイセクションバンド幅

– represents the worst case
divide the machine in two parts, 
each with half the nodes and 
sum the bandwidth of the links that cross the dividing line

321321

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Bus Network

N processors,  1 switch  (    ),  1 link (the bus)
Only 1 simultaneous transfer at a time

NB (best case) = link (bus) bandwidth * 1
BB (worst case)  = link (bus) bandwidth * 1

Processor
node

Bidirectional
network switch

322322
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Ring Network

If a link is as fast as a bus, the ring is only twice as fast 
as a bus in the worst case, but is N times faster in the 
best case

N processors, N switches, 2 links/switch, N links
N simultaneous transfers

NB (best case) = link bandwidth * N
BB (worst case) = link bandwidth * 2

323323

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Crossbar (Xbar) Network

N processors, N2 switches (unidirectional), 
2 links/switch, N2 links
N simultaneous transfers

NB = link bandwidth * N
BB = link bandwidth * N/2

324324
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Fully Connected Network

N processors, N switches, N-1 links/switch,                   
(N*(N-1))/2 links
N simultaneous transfers

NB (best case) = link bandwidth * (N*(N-1))/2
BB (worst case) = link bandwidth * (N/2)2

325325

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Fat Tree

C DA B

Trees are good structures. 
People in CS (Computer Science) use them all the time. 
Suppose we wanted to make a tree network.

Any time A wants to send to C, it ties up the upper links, 
so that B can't send to D. 

The bisection bandwidth on a tree is horrible - 1 link, at all times

The solution is to 'thicken' the upper links. 
326326
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Fat Tree

N processors, log(N-1)*logN switches, 
2 up + 4 down = 6 links/switch, N*logN links
N simultaneous transfers

NB = link bandwidth * N log N
BB = link bandwidth * 4

327327

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

2D and 3D Mesh/Torus Network

N simultaneous transfers
NB = link bandwidth * 4N       or    link bandwidth * 6N
BB = link bandwidth * 2 N1/2    or    link bandwidth * 2 N2/3

N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D 
torus) links/switch, 4N/2 links or 6N/2 links

Mesh Torus

328328
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
329329

Router Architecture Overview

inbuf

inout

inbuf

inout

inbuf

in
bu

f

in out

inbufin
out

XBAR
SwitchWest

Router
East
Router

South Router

North Router 

in

out

Core
Router

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
330330

Router Architecture

D
EM

U
X Output port North

Output port East

Output port South

Output port West

Output port CoreD
EM

U
X

Input port
North

Input port
East

Input port
South

Input port
West

Input port
Core

Router

XBAR
Switch

ARB
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Interconnection Network Comparison

For a 64 processor system

Bus Ring 2D 
Torus

6-cube Fully 
connected

Network 
bandwidth

1

Bisection 
bandwidth

1

Total # of 
switches    

1

Links per 
switch

Total # of 
links (bidi)

1

64

2

64

2+1

64+64

256

16

64

4+1

128+64

192

32

64

6+7

192+64

2016

1024

64

63+1

2016+64

331331

332

マルチコアプロセッサ
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Where are We Now?

Processor

Control

Datapath

Memory

Input

Output

Input

Output

Memory

Processor

Control

Datapath

Multiprocessor – multiple processors with a single 
shared address space
Cluster – multiple computers (each with their own 
address space) connected over a local area network 
(LAN) functioning as a single system

333333

Single Bus Multiprocessor 単一バス結合

Caches are used to reduce latency and to lower bus traffic
Must provide hardware to ensure that caches and memory 
are consistent (cache coherency)
Must provide a hardware mechanism to support process 
synchronization

Proc1 Proc2 Proc4

Caches Caches Caches

Single Bus

Memory I/O

Proc3

Caches

334334
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ネットワーク結合のマルチプロセッサ

Proc1 Proc2 Proc4

Caches Caches Caches

Network

Memory

Proc3

Caches

Memory Memory Memory

335335

TokyoTech TSUBAME

336336



169

TokyoTech TSUBAME

337337

TokyoTech TSUBAME

338338



170

TSUBAME 物理レイアウト

339339

TokyoTech TSUBAME

340340
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チップマルチプロセッサの例
Ｃell Broadband Engine

Ｃell Broadband Engine & PS3

342342
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Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

Cell BE Element Interconnect Bus

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed343343

SPE (Synergistic Processor Element)

344344
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Cell/B.E. のピーク性能

１サイクルで積和演算を１回実行できる演算器
(2 FLOP/cycle)
SIMD構成で，ＳＰＥあたりの並列度 ４

チップ内のＳＰＥの数 ８

動作周波数 ４ＧＨｚ

２ × ４ × ８×４ ＝ ２５６ ＧＦＬＯＰＳ

（ペンティアムは ８ＧＦＬＯＰＳ 程度）

345345

プログラミング例

346346
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コンパイラによる最適化

347347

８個のＳＰＵによる並列効果

348348
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Ｃell/B.E. まとめ

２５６ＧＦＬＯＰＳという高いピーク性能

ＳＰＥ

キャッシュ無し，分岐予測無し

オーバヘッドの削減

ＳＩＭＤ並列化，DMA転送

８個のＳＰＥを利用した並列化

アセンブラ技術

ミドルウェア

オペレーティングシステム

コンパイラ技術

349349

世界初のマイクロプロセッサ

出典: フリー百科事典『ウィキペディア（Wikipedia）』， Intelミュージアム

プロセッサ 出荷年 トランジスタ数
4004 1971  2,250 

350350
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メニーコアへの流れ，ムーアの法則

プロセッサ 出荷年 トランジスタ数
4004 1971   2,250 
8008 1972   2,500 
8080 1974   5,000 
8086 1978   29,000 
286 1982   120,000 
386™ processor 1985   275,000 
486™ DX processor 1989   1,180,000 
Pentium® processor 1993   3,100,000 
Pentium II processor 1997   7,500,000 
Pentium III processor 1999   24,000,000 
Pentium 4 processor 2000   42,000,000 

出典： Intel社, http://www.intel.com/research/silicon/mooreslaw.htm
351351

Moore’s Law
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マルチコア（～10個程度）からメニーコア（多数）へ

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

数世代の
ＲＩＳＣプロセッサのサイズ

マルチコア（～10個程度）からメニーコア（多数）へ

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade
354354
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Feature-Packingアーキテクチャ

a

b c

①

②

③
③

③ ④

通常のメニーコア（均一なコアの場合）

Feature-Packingアーキテクチャを導入したメニーコア

計算コア（アプリケーション実行）

命令供給支援コア データ供給支援コア
355355

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

レポート 提出方法

８月１１日（午後５時）までに電子メールで提出

report@arch.cs.titech.ac.jp

レポートの詳細はホームページを参照

電子メールのタイトル

Computer Architecture Report

電子メールの内容

氏名，学籍番号

回答

ＰＤＦファイルを添付

356356
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関連科目

４学期： 計算機論理設計
計算機を構成するプロセッサとその制御部に関し，具体構成と設計の原理
を講義する．特に，レジスタトランスファ言語を用いて計算機の内部動作を

記述し，簡単な計算機の設計を行う．

５学期： 計算機アーキテクチャ第一
CPU を含め，メモリ，チャネル，入出力，通信制御，等の計算機システムを

構成する各種装置について，その役割，動作原理について講義する．

６学期： 計算機アーキテクチャ第二
最新の計算機システムに採り入れられている高速プロセッサ制御方式，構
成方式について述べ、これらの技術を駆使したパイプラインプロセッサ，
スーパコンピュータ，超並列計算機，データフロー計算機，等の先端的な
アーキテクチャについて講義する．

計算機アーキテクチャ特論（大学院）


